Update NATS-Bench (sss version 1.2)
This commit is contained in:
		| @@ -13,6 +13,14 @@ This facilitates a much larger community of researchers to focus on developing b | ||||
|  | ||||
| ## How to Use NATS-Bench | ||||
|  | ||||
| ### Preparation and Download | ||||
| The **latest** benchmark file of NATS-Bench can be downloaded from [Google Drive](https://drive.google.com/drive/folders/1zjB6wMANiKwB2A1yil2hQ8H_qyeSe2yt?usp=sharing). | ||||
|  | ||||
| 1, create the benchmark instance: | ||||
| ``` | ||||
| api = create(None, 'sss', fast_mode=True, verbose=True) | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ## The Procedure of Creating NATS-Bench | ||||
|  | ||||
| @@ -36,34 +44,34 @@ The checkpoint of all candidates are located at `output/NATS-Bench-size` by defa | ||||
|  | ||||
| ``` | ||||
| DARTS (V1): | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 | ||||
|  | ||||
| DARTS (V2): | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2 | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 | ||||
|  | ||||
| GDAS: | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 | ||||
|  | ||||
| SETN: | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn | ||||
|  | ||||
| Random Search with Weight Sharing: | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random | ||||
|  | ||||
| ENAS: | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 | ||||
| ``` | ||||
|  | ||||
| ### Reproduce NAS methods on the size search space | ||||
|   | ||||
		Reference in New Issue
	
	Block a user