Update NATS-Bench (sss version 1.2)
This commit is contained in:
		| @@ -11,7 +11,6 @@ | ||||
| # python exps/NATS-Bench/sss-collect.py                                      # | ||||
| ############################################################################## | ||||
| import os, re, sys, time, shutil, argparse, collections | ||||
| import numpy as np | ||||
| import torch | ||||
| from tqdm import tqdm | ||||
| from pathlib import Path | ||||
| @@ -22,7 +21,7 @@ if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import dict2config | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from nats_bench   import pickle_save, pickle_load, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
| from utils        import get_md5_file | ||||
|  | ||||
| @@ -193,8 +192,8 @@ def simplify(save_dir, save_name, nets, total): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
|  | ||||
|     full_save_path = full_save_dir / '{:06d}.npy'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.npy'.format(index) | ||||
|     full_save_path = full_save_dir / '{:06d}.pickle'.format(index) | ||||
|     simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index) | ||||
|  | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
| @@ -213,13 +212,13 @@ def simplify(save_dir, save_name, nets, total): | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     np.save(str(full_save_path), to_save_data) | ||||
|     pickle_save(to_save_data, str(full_save_path)) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     np.save(str(simple_save_path), to_save_data) | ||||
|     pickle_save(to_save_data, str(simple_save_path)) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
| @@ -231,18 +230,23 @@ def simplify(save_dir, save_name, nets, total): | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.npy'.format(save_name) | ||||
|   np.save(str(save_file_name), final_infos) | ||||
|   save_file_name = save_dir / '{:}.pickle'.format(save_name) | ||||
|   pickle_save(final_infos, str(save_file_name)) | ||||
|   # move the benchmark file to a new path | ||||
|   hd5sum = get_md5_file(save_file_name) | ||||
|   hd5_file_name = save_dir / '{:}-{:}.npy'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(save_file_name, hd5_file_name) | ||||
|   hd5sum = get_md5_file(str(save_file_name) + '.pbz2') | ||||
|   hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(str(save_file_name) + '.pbz2', hd5_file_name) | ||||
|   print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name)) | ||||
|   # move the directory to a new path | ||||
|   hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum) | ||||
|   shutil.move(full_save_dir, hd5_full_save_dir) | ||||
|   shutil.move(simple_save_dir, hd5_simple_save_dir) | ||||
|   # save the meta information for simple and full | ||||
|   final_infos['arch2infos'] = None | ||||
|   final_infos['evaluated_indexes'] = set() | ||||
|   pickle_save(final_infos, str(hd5_full_save_dir / 'meta.pickle')) | ||||
|   pickle_save(final_infos, str(hd5_simple_save_dir / 'meta.pickle')) | ||||
|  | ||||
|  | ||||
| def traverse_net(candidates: List[int], N: int): | ||||
|   | ||||
							
								
								
									
										97
									
								
								exps/NATS-Bench/test-nats-api.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								exps/NATS-Bench/test-nats-api.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,97 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          # | ||||
| ############################################################################## | ||||
| # Usage: python exps/NATS-Bench/test-nats-api.py                             # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net, CellStructure | ||||
|  | ||||
|  | ||||
| def test_api(api, is_301=True): | ||||
|   print('{:} start testing the api : {:}'.format(time_string(), api)) | ||||
|   api.clear_params(12) | ||||
|   api.reload(index=12) | ||||
|    | ||||
|   # Query the informations of 1113-th architecture | ||||
|   info_strs = api.query_info_str_by_arch(1113) | ||||
|   print(info_strs) | ||||
|   info = api.query_by_index(113) | ||||
|   print('{:}\n'.format(info)) | ||||
|   info = api.query_by_index(113, 'cifar100') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   info = api.query_meta_info_by_index(115, '90' if is_301 else '200') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|     for xset in ['train', 'test', 'valid']: | ||||
|       best_index, highest_accuracy = api.find_best(dataset, xset) | ||||
|     print('') | ||||
|   params = api.get_net_param(12, 'cifar10', None) | ||||
|  | ||||
|   # Obtain the config and create the network | ||||
|   config = api.get_net_config(12, 'cifar10') | ||||
|   print('{:}\n'.format(config)) | ||||
|   network = get_cell_based_tiny_net(config) | ||||
|   network.load_state_dict(next(iter(params.values()))) | ||||
|  | ||||
|   # Obtain the cost information | ||||
|   info = api.get_cost_info(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   info = api.get_latency(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   for index in [13, 15, 19, 200]: | ||||
|     info = api.get_latency(index, 'cifar10') | ||||
|  | ||||
|   # Count the number of architectures | ||||
|   info = api.statistics('cifar100', '12') | ||||
|   print('{:} statistics results : {:}\n'.format(time_string(), info)) | ||||
|  | ||||
|   # Show the information of the 123-th architecture | ||||
|   api.show(123) | ||||
|  | ||||
|   # Obtain both cost and performance information | ||||
|   info = api.get_more_info(1234, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   print('{:} finish testing the api : {:}'.format(time_string(), api)) | ||||
|  | ||||
|   if not is_301: | ||||
|     arch_str = '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|' | ||||
|     matrix = api.str2matrix(arch_str) | ||||
|     print('Compute the adjacency matrix of {:}'.format(arch_str)) | ||||
|     print(matrix) | ||||
|   info = api.simulate_train_eval(123, 'cifar10') | ||||
|   print('simulate_train_eval : {:}\n\n'.format(info)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   for fast_mode in [True, False]: | ||||
|     for verbose in [True, False]: | ||||
|       print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose)) | ||||
|       api301 = create(None, 'size', fast_mode=fast_mode, verbose=True) | ||||
|       print('{:} --->>> {:}'.format(time_string(), api301)) | ||||
|       test_api(api301, True) | ||||
|  | ||||
|   # api201 = create(None, 'topology', True)  # use the default file path | ||||
|   # test_api(api201, False) | ||||
|   # print ('Test {:} done'.format(api201)) | ||||
		Reference in New Issue
	
	Block a user