Prototype generic nas model.
This commit is contained in:
		| @@ -20,7 +20,7 @@ from .cell_searchs import CellStructure, CellArchitectures | ||||
| def get_cell_based_tiny_net(config): | ||||
|   if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM'] | ||||
|   group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM', 'generic'] | ||||
|   if super_type == 'basic' and config.name in group_names: | ||||
|     from .cell_searchs import nas201_super_nets as nas_super_nets | ||||
|     try: | ||||
|   | ||||
| @@ -7,6 +7,7 @@ from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .generic_model         import GenericNAS201Model | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| @@ -18,7 +19,8 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                      "GDAS": TinyNetworkGDAS, | ||||
|                      "SETN": TinyNetworkSETN, | ||||
|                      "ENAS": TinyNetworkENAS, | ||||
|                      "RANDOM": TinyNetworkRANDOM} | ||||
|                      "RANDOM": TinyNetworkRANDOM, | ||||
|                      "generic": GenericNAS201Model} | ||||
|  | ||||
| nasnet_super_nets = {"GDAS": NASNetworkGDAS, | ||||
|                      "DARTS": NASNetworkDARTS} | ||||
|   | ||||
							
								
								
									
										200
									
								
								lib/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										200
									
								
								lib/models/cell_searchs/generic_model.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,200 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # | ||||
| ##################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import Text | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class GenericNAS201Model(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(GenericNAS201Model, self).__init__() | ||||
|     self._C          = C | ||||
|     self._layerN     = N | ||||
|     self._max_nodes  = max_nodes | ||||
|     self._stem       = nn.Sequential( | ||||
|                          nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                          nn.BatchNorm2d(C)) | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self._cells      = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self._cells.append(cell) | ||||
|       C_prev = cell.out_dim | ||||
|     self._op_names   = deepcopy(search_space) | ||||
|     self._Layer      = len(self._cells) | ||||
|     self.edge2index  = edge2index | ||||
|     self.lastact     = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier  = nn.Linear(C_prev, num_classes) | ||||
|     self._num_edge   = num_edge | ||||
|     # algorithm related | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self._mode        = None | ||||
|     self.dynamic_cell = None | ||||
|     self._tau         = None | ||||
|     self._algo        = None | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
|     assert self._algo is None, 'This functioin can only be called once.' | ||||
|     self._algo = algo | ||||
|     if algo == 'enas': | ||||
|       self.controller = Controller(len(self.edge2index), len(self._op_names)) | ||||
|     else: | ||||
|       self.arch_parameters = nn.Parameter( 1e-3*torch.randn(self._num_edge, len(self._op_names)) ) | ||||
|       if algo == 'gdas': | ||||
|         self._tau         = 10 | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
|   @property | ||||
|   def mode(self): | ||||
|     return self._mode | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._stem.parameters()) | ||||
|     xlist+= list(self._cells.parameters()) | ||||
|     xlist+= list(self.lastact.parameters()) | ||||
|     xlist+= list(self.global_pooling.parameters()) | ||||
|     xlist+= list(self.classifier.parameters()) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self._tau = tau | ||||
|  | ||||
|   @property | ||||
|   def tau(self): | ||||
|     return self._tau | ||||
|  | ||||
|   @property | ||||
|   def alphas(self): | ||||
|     if self._algo == 'enas': | ||||
|       return list(self.controller.parameters()) | ||||
|     else: | ||||
|       return [self.arch_parameters] | ||||
|  | ||||
|   @property | ||||
|   def message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   @property | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self._max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self._max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
|  | ||||
|   def get_log_prob(self, arch): | ||||
|     with torch.no_grad(): | ||||
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|     select_logits = [] | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self.op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|  | ||||
|   def return_topK(self, K): | ||||
|     archs = Structure.gen_all(self.op_names, self._max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|     return return_pairs | ||||
|  | ||||
|   def normalize_archp(self): | ||||
|     if self.mode == 'gdas': | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|         logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       with torch.no_grad(): | ||||
|         hardwts_cpu = hardwts.detach().cpu() | ||||
|       return hardwts, hardwts_cpu, index | ||||
|     else: | ||||
|       alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|       index   = alphas.max(-1, keepdim=True)[1] | ||||
|       with torch.no_grad(): | ||||
|         alphas_cpu = alphas.detach().cpu() | ||||
|       return alphas, alphas_cpu, index | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas, alphas_cpu, index = self.normalize_archp() | ||||
|     feature = self._stem(inputs) | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|         elif self.mode == 'gdas': | ||||
|           feature = cell.forward_gdas(feature, alphas, index) | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling(out) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
| @@ -1,5 +1,5 @@ | ||||
| from .evaluation_utils import obtain_accuracy | ||||
| from .gpu_manager      import GPUManager | ||||
| from .flop_benchmark   import get_model_infos | ||||
| from .flop_benchmark   import get_model_infos, count_parameters_in_MB | ||||
| from .affine_utils     import normalize_points, denormalize_points | ||||
| from .affine_utils     import identity2affine, solve2theta, affine2image | ||||
|   | ||||
		Reference in New Issue
	
	Block a user