Upgrade NAS-API to v2.0:
we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
This commit is contained in:
		| @@ -4,6 +4,7 @@ | ||||
| # [2020.02.25] Initialize the API as v1.1 | ||||
| # [2020.03.09] Upgrade the API to v1.2 | ||||
| # [2020.03.16] Upgrade the API to v1.3 | ||||
| # [2020.06.30] Upgrade the API to v2.0 | ||||
| import os | ||||
| from setuptools import setup | ||||
|  | ||||
| @@ -15,7 +16,7 @@ def read(fname='README.md'): | ||||
|  | ||||
| setup( | ||||
|     name = "nas_bench_201", | ||||
|     version = "1.3", | ||||
|     version = "2.0", | ||||
|     author = "Xuanyi Dong", | ||||
|     author_email = "dongxuanyi888@gmail.com", | ||||
|     description = "API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|   | ||||
| @@ -22,7 +22,7 @@ def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, A | ||||
|                         results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount: | ||||
|   xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                          results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
| @@ -126,7 +126,6 @@ def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test']) | ||||
|   # arch_info_full.debug_test() | ||||
|   # arch_info_less.debug_test() | ||||
|   # import pdb; pdb.set_trace() | ||||
|   return arch_info_full, arch_info_less | ||||
|  | ||||
|  | ||||
|   | ||||
							
								
								
									
										93
									
								
								exps/NAS-Bench-201/test-nas-api-vis.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										93
									
								
								exps/NAS-Bench-201/test-nas-api-vis.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,93 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NAS-Bench-201/test-nas-api-vis.py | ||||
| ############################################################### | ||||
| import os, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nas_201_api import NASBench201API, NASBench301API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
| def visualize_info(api, vis_save_dir, indicator): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   # print ('{:} start to visualize {:} information'.format(time_string(), api)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator) | ||||
|   cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator) | ||||
|   imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator) | ||||
|   cifar010_info = torch.load(cifar010_cache_path) | ||||
|   cifar100_info = torch.load(cifar100_cache_path) | ||||
|   imagenet_info = torch.load(imagenet_cache_path) | ||||
|   indexes       = list(range(len(cifar010_info['params']))) | ||||
|  | ||||
|   print ('{:} start to visualize relative ranking'.format(time_string())) | ||||
|  | ||||
|   cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i]) | ||||
|   cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i]) | ||||
|   imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i]) | ||||
|  | ||||
|   cifar100_labels, imagenet_labels = [], [] | ||||
|   for idx in cifar010_ord_indexes: | ||||
|     cifar100_labels.append( cifar100_ord_indexes.index(idx) ) | ||||
|     imagenet_labels.append( imagenet_ord_indexes.index(idx) ) | ||||
|   print ('{:} prepare data done.'.format(time_string())) | ||||
|  | ||||
|   dpi, width, height = 200, 1400,  800 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 18, 12 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(min(indexes), max(indexes)) | ||||
|   plt.ylim(min(indexes), max(indexes)) | ||||
|   # plt.ylabel('y').set_rotation(30) | ||||
|   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||
|   ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|   ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||
|   ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10') | ||||
|   ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100') | ||||
|   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='ImageNet-16-120') | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize) | ||||
|   ax.set_ylabel('architecture ranking', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'tss') | ||||
|  | ||||
|   visualize_info(None, Path('output/vis-nas-bench/'), 'sss') | ||||
							
								
								
									
										283
									
								
								exps/NAS-Bench-201/test-nas-api.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										283
									
								
								exps/NAS-Bench-201/test-nas-api.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,283 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NAS-Bench-201/test-nas-api.py | ||||
| ############################################################### | ||||
| import os, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nas_201_api import NASBench201API, NASBench301API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
| def test_api(api, is_301=True): | ||||
|   print('{:} start testing the api : {:}'.format(time_string(), api)) | ||||
|   api.clear_params(12) | ||||
|   api.reload(index=12) | ||||
|    | ||||
|   # Query the informations of 1113-th architecture | ||||
|   info_strs = api.query_info_str_by_arch(1113) | ||||
|   print(info_strs) | ||||
|   info = api.query_by_index(113) | ||||
|   print('{:}\n'.format(info)) | ||||
|   info = api.query_by_index(113, 'cifar100') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   info = api.query_meta_info_by_index(115, '90' if is_301 else '200') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|     for xset in ['train', 'test', 'valid']: | ||||
|       best_index, highest_accuracy = api.find_best(dataset, xset) | ||||
|     print('') | ||||
|   params = api.get_net_param(12, 'cifar10', None) | ||||
|  | ||||
|   # obtain the config and create the network | ||||
|   config = api.get_net_config(12, 'cifar10') | ||||
|   print('{:}\n'.format(config)) | ||||
|   network = get_cell_based_tiny_net(config) | ||||
|   network.load_state_dict(next(iter(params.values()))) | ||||
|  | ||||
|   # obtain the cost information | ||||
|   info = api.get_cost_info(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   info = api.get_latency(12, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   # count the number of architectures | ||||
|   info = api.statistics('cifar100', '12') | ||||
|   print('{:}\n'.format(info)) | ||||
|  | ||||
|   # show the information of the 123-th architecture | ||||
|   api.show(123) | ||||
|  | ||||
|   # obtain both cost and performance information | ||||
|   info = api.get_more_info(1234, 'cifar10') | ||||
|   print('{:}\n'.format(info)) | ||||
|   print('{:} finish testing the api : {:}'.format(time_string(), api)) | ||||
|  | ||||
|  | ||||
| def visualize_sss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-sss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='90') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='90') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64'] | ||||
|   pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid] | ||||
|   largest_indexes = [api.query_index_by_arch('64:64:64:64:64')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'sss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-tss-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='200') | ||||
|       train_accs.append(info['train-accuracy']) | ||||
|       test_accs.append(info['test-accuracy']) | ||||
|       if dataset == 'cifar10': | ||||
|         info = api.get_more_info(index, 'cifar10-valid', hp='200') | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   resnet = ['|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|'] | ||||
|   resnet_indexes = [api.query_index_by_arch(x) for x in resnet] | ||||
|   largest_indexes = [api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|')] | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 250, 8500, 1300 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 24, 24 | ||||
|   # resnet_scale, resnet_alpha = 120, 0.5 | ||||
|   xscale, xalpha = 120, 0.8 | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 4, figsize=figsize) | ||||
|   # ax1, ax2, ax3, ax4, ax5 = axs | ||||
|   for ax in axs: | ||||
|     for tick in ax.xaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|     ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f')) | ||||
|     for tick in ax.yaxis.get_major_ticks(): | ||||
|       tick.label.set_fontsize(LabelSize) | ||||
|   ax2, ax3, ax4, ax5 = axs | ||||
|   # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5)) | ||||
|   # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   # ax1.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax2.scatter([params[x] for x in resnet_indexes] , [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax2.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax3.scatter([params[x] for x in resnet_indexes] , [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax3.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax4.scatter([flops[x] for x in  resnet_indexes], [train_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize) | ||||
|   ax4.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax5.scatter([flops[x] for x in  resnet_indexes], [test_accs[x] for x in  resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha) | ||||
|   ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green',  label='Largest Candidate', alpha=xalpha) | ||||
|   ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize) | ||||
|   ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize) | ||||
|   ax5.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   save_path = vis_save_dir / 'tss-{:}.png'.format(dataset) | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| def test_issue_81_82(api): | ||||
|   results = api.query_by_index(0, 'cifar10') | ||||
|   results = api.query_by_index(0, 'cifar10-valid', hp='200') | ||||
|   print(results.keys()) | ||||
|   print(results[888].get_eval('x-valid')) | ||||
|   result_dict = api.get_more_info(index=0, dataset='cifar10-valid', iepoch=11, hp='200', is_random=False) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   api201 = NASBench201API(os.path.join(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth'), verbose=True) | ||||
|   test_issue_81_82(api201) | ||||
|   test_api(api201, False) | ||||
|   api201 = NASBench201API(None, verbose=True) | ||||
|   test_issue_81_82(api201) | ||||
|   visualize_tss_info(api201, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_tss_info(api201, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|   test_api(api201, False) | ||||
|  | ||||
|   api301 = NASBench301API(None, verbose=True) | ||||
|   visualize_sss_info(api301, 'cifar10', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'cifar100', Path('output/vis-nas-bench')) | ||||
|   visualize_sss_info(api301, 'ImageNet16-120', Path('output/vis-nas-bench')) | ||||
|   test_api(api301, True) | ||||
|  | ||||
|   # save_dir = '{:}/visual'.format(args.save_dir) | ||||
| @@ -38,7 +38,6 @@ def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): | ||||
|   final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) | ||||
|   for idx in range(len(api)): | ||||
|     # info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) | ||||
|     # import pdb; pdb.set_trace() | ||||
|     for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|       info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) | ||||
|       if key == 'cifar10-valid': | ||||
|   | ||||
							
								
								
									
										242
									
								
								exps/NAS-Bench-201/xshape-collect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										242
									
								
								exps/NAS-Bench-201/xshape-collect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,242 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| # python exps/NAS-Bench-201/xshape-collect.py | ||||
| ##################################################### | ||||
| import os, re, sys, time, argparse, collections | ||||
| import numpy as np | ||||
| import torch | ||||
| from tqdm import tqdm | ||||
| from pathlib import Path | ||||
| from collections import defaultdict, OrderedDict | ||||
| from typing import Dict, Any, Text, List | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import dict2config | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import NASBench301API, ArchResults, ResultsCount | ||||
| from procedures   import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]) -> ArchResults: | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     try: | ||||
|       checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     except: | ||||
|       raise ValueError('This checkpoint failed to be loaded : {:}'.format(checkpoint_path)) | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     ok_dataset = 0 | ||||
|     for dataset in datasets: | ||||
|       if dataset not in checkpoint: | ||||
|         print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)) | ||||
|         continue | ||||
|       else: | ||||
|         ok_dataset += 1 | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'name': 'infer.shape.tiny', 'channels': arch_str, 'arch_str': arch_str, | ||||
|                      'genotype': results['arch_config']['genotype'], | ||||
|                      'class_num': results['arch_config']['num_classes']} | ||||
|       xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], | ||||
|                              results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|       xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|       xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|     if ok_dataset < len(datasets): raise ValueError('{:} does find enought data : {:} vs {:}'.format(checkpoint_path, ok_dataset, len(datasets))) | ||||
|   return information | ||||
|  | ||||
|  | ||||
| def correct_time_related_info(hp2info: Dict[Text, ArchResults]): | ||||
|   # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine. | ||||
|   x1 = hp2info['01'].get_metrics('cifar10-valid', 'x-valid')['all_time'] / 98 | ||||
|   x2 = hp2info['01'].get_metrics('cifar10-valid', 'ori-test')['all_time'] / 40 | ||||
|   cifar010_latency = (x1 + x2) / 2 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('cifar10-valid', None, cifar010_latency) | ||||
|     arch_info.reset_latency('cifar10', None, cifar010_latency) | ||||
|   # hp2info['01'].get_latency('cifar10') | ||||
|  | ||||
|   x1 = hp2info['01'].get_metrics('cifar100', 'ori-test')['all_time'] / 40 | ||||
|   x2 = hp2info['01'].get_metrics('cifar100', 'x-test')['all_time'] / 20 | ||||
|   x3 = hp2info['01'].get_metrics('cifar100', 'x-valid')['all_time'] / 20 | ||||
|   cifar100_latency = (x1 + x2 + x3) / 3 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('cifar100', None, cifar100_latency) | ||||
|  | ||||
|   x1 = hp2info['01'].get_metrics('ImageNet16-120', 'ori-test')['all_time'] / 24 | ||||
|   x2 = hp2info['01'].get_metrics('ImageNet16-120', 'x-test')['all_time'] / 12 | ||||
|   x3 = hp2info['01'].get_metrics('ImageNet16-120', 'x-valid')['all_time'] / 12 | ||||
|   image_latency = (x1 + x2 + x3) / 3 | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_latency('ImageNet16-120', None, image_latency) | ||||
|  | ||||
|   # CIFAR10 VALID | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar10-valid', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time = [], [] | ||||
|   for key, value in hp2info['01'].query('cifar10-valid', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10-valid', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_ori_test_time) | ||||
|  | ||||
|   # CIFAR10 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar10', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time = [] | ||||
|   for key, value in hp2info['01'].query('cifar10', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar10', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_ori_test_time) | ||||
|  | ||||
|   # CIFAR100 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('cifar100', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|   for key, value in hp2info['01'].query('cifar100', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     elif key.startswith('x-test@'): | ||||
|       eval_x_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('cifar100', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_x_test_time) | ||||
|     arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_ori_test_time) | ||||
|  | ||||
|   # ImageNet16-120 | ||||
|   train_per_epoch_time = list(hp2info['01'].query('ImageNet16-120', 777).train_times.values()) | ||||
|   train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time) | ||||
|   eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], [] | ||||
|   for key, value in hp2info['01'].query('ImageNet16-120', 777).eval_times.items(): | ||||
|     if key.startswith('ori-test@'): | ||||
|       eval_ori_test_time.append(value) | ||||
|     elif key.startswith('x-valid@'): | ||||
|       eval_x_valid_time.append(value) | ||||
|     elif key.startswith('x-test@'): | ||||
|       eval_x_test_time.append(value) | ||||
|     else: raise ValueError('-- {:} --'.format(key)) | ||||
|   eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time) | ||||
|   eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time) | ||||
|   eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time) | ||||
|   for hp, arch_info in hp2info.items(): | ||||
|     arch_info.reset_pseudo_train_times('ImageNet16-120', None, train_per_epoch_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_x_valid_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_x_test_time) | ||||
|     arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_ori_test_time) | ||||
|   return hp2info | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, save_name, nets, total): | ||||
|    | ||||
|   hps, seeds = ['01', '12', '90'], set() | ||||
|   for hp in hps: | ||||
|     sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|     ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth'))) | ||||
|     seed2names = defaultdict(list) | ||||
|     for ckp in ckps: | ||||
|       parts = re.split('-|\.', ckp.name) | ||||
|       seed2names[parts[3]].append(ckp.name) | ||||
|     print('DIR : {:}'.format(sub_save_dir)) | ||||
|     nums = [] | ||||
|     for seed, xlist in seed2names.items(): | ||||
|       seeds.add(seed) | ||||
|       nums.append(len(xlist)) | ||||
|       print('  seed={:}, num={:}'.format(seed, len(xlist))) | ||||
|     # assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) | ||||
|   print('{:} start simplify the checkpoint.'.format(time_string())) | ||||
|  | ||||
|   datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|  | ||||
|   simplify_save_dir, arch2infos, evaluated_indexes = save_dir / save_name, {}, set() | ||||
|   simplify_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   end_time, arch_time = time.time(), AverageMeter() | ||||
|   # for index, arch_str in enumerate(nets): | ||||
|   for index in tqdm(range(total)): | ||||
|     arch_str = nets[index] | ||||
|     hp2info = OrderedDict() | ||||
|     for hp in hps: | ||||
|       sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) | ||||
|       ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] | ||||
|       ckps = [x for x in ckps if x.exists()] | ||||
|       if len(ckps) == 0: raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) | ||||
|        | ||||
|       arch_info = account_one_arch(index, arch_str, ckps, datasets) | ||||
|       hp2info[hp] = arch_info | ||||
|      | ||||
|     hp2info = correct_time_related_info(hp2info) | ||||
|     evaluated_indexes.add(index) | ||||
|  | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     torch.save(to_save_data, simplify_save_dir / '{:}-FULL.pth'.format(index)) | ||||
|      | ||||
|     for hp in hps: hp2info[hp].clear_params() | ||||
|     to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), | ||||
|                                 '12': hp2info['12'].state_dict(), | ||||
|                                 '90': hp2info['90'].state_dict()}) | ||||
|     torch.save(to_save_data, simplify_save_dir / '{:}-SIMPLE.pth'.format(index)) | ||||
|     arch2infos[index] = to_save_data | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True)) | ||||
|     # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) | ||||
|   print('{:} {:} done.'.format(time_string(), save_name)) | ||||
|   final_infos = {'meta_archs' : nets, | ||||
|                  'total_archs': total, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = save_dir / '{:}.pth'.format(save_name) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), total, save_file_name)) | ||||
|  | ||||
|  | ||||
| def traverse_net(candidates: List[int], N: int): | ||||
|   nets = [''] | ||||
|   for i in range(N): | ||||
|     new_nets = [] | ||||
|     for net in nets: | ||||
|       for C in candidates: | ||||
|         new_nets.append(str(C) if net == '' else "{:}:{:}".format(net,C)) | ||||
|     nets = new_nets | ||||
|   return nets | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-202',    help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC'   ,  type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers'   ,  type=int, default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N'      ,  type=int, default=32768,  help='For safety.') | ||||
|   parser.add_argument('--save_name'    ,  type=str, default='simplify',                  help='The save directory.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|  | ||||
|   save_dir  = Path(args.base_save_dir) | ||||
|   simplify(save_dir, args.save_name, nets, args.check_N) | ||||
| @@ -22,7 +22,7 @@ from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def obtain_valid_ckp(save_dir: Text, total: int): | ||||
|   possible_seeds = [777, 888] | ||||
|   possible_seeds = [777, 888, 999] | ||||
|   seed2ckps = defaultdict(list) | ||||
|   miss2ckps = defaultdict(list) | ||||
|   for i in range(total): | ||||
| @@ -33,7 +33,7 @@ def obtain_valid_ckp(save_dir: Text, total: int): | ||||
|       else: | ||||
|         miss2ckps[seed].append(i) | ||||
|   for seed, xlist in seed2ckps.items(): | ||||
|     print('[{:}] [seed={:}] has {:}/{:}'.format(save_dir, seed, len(xlist), total)) | ||||
|     print('[{:}] [seed={:}] has {:5d}/{:5d} | miss {:5d}/{:5d}'.format(save_dir, seed, len(xlist), total, total-len(xlist), total)) | ||||
|   return dict(seed2ckps), dict(miss2ckps) | ||||
|      | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user