Upgrade NAS-API to v2.0:
we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
This commit is contained in:
		| @@ -65,7 +65,7 @@ class MyWorker(Worker): | ||||
|     assert len(self.seen_archs) > 0 | ||||
|     best_index, best_acc = -1, None | ||||
|     for arch_index in self.seen_archs: | ||||
|       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True) | ||||
|       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | ||||
|       vacc = info['valid-accuracy'] | ||||
|       if best_acc is None or best_acc < vacc: | ||||
|         best_acc = vacc | ||||
| @@ -77,7 +77,7 @@ class MyWorker(Worker): | ||||
|     start_time = time.time() | ||||
|     structure  = self.convert_func( config ) | ||||
|     arch_index = self._nas_bench.query_index_by_arch( structure ) | ||||
|     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True) | ||||
|     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | ||||
|     cur_time   = info['train-all-time'] + info['valid-per-time'] | ||||
|     cur_vacc   = info['valid-accuracy'] | ||||
|     self.real_cost_time += (time.time() - start_time) | ||||
|   | ||||
| @@ -42,7 +42,7 @@ def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_01 | ||||
|   if use_012_epoch_training and nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, None, True) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, iepoch=None, hp='12', is_random=True) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   elif not use_012_epoch_training and nas_bench is not None: | ||||
| @@ -51,10 +51,10 @@ def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_01 | ||||
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', False) | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, False, True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||
|     cost = nas_bench.get_cost_info(arch_index, dataname, False) | ||||
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12') | ||||
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200') | ||||
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||
|     cost = nas_bench.get_cost_info(arch_index, dataname, hp='200') | ||||
|     # The following codes are used to estimate the time cost. | ||||
|     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record. | ||||
|     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user