Upgrade NAS-API to v2.0:
we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
This commit is contained in:
		| @@ -1,9 +1,11 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ##################################################### | ||||
| from .api import NASBench201API | ||||
| from .api import ArchResults, ResultsCount | ||||
| from .api_utils import ArchResults, ResultsCount | ||||
| from .api_201 import NASBench201API | ||||
| from .api_301 import NASBench301API | ||||
|  | ||||
| # NAS_BENCH_201_API_VERSION="v1.1"  # [2020.02.25] | ||||
| # NAS_BENCH_201_API_VERSION="v1.2"  # [2020.03.09] | ||||
| NAS_BENCH_201_API_VERSION="v1.3"  # [2020.03.16] | ||||
| # NAS_BENCH_201_API_VERSION="v1.3"  # [2020.03.16] | ||||
| NAS_BENCH_201_API_VERSION="v2.0"    # [2020.06.30] | ||||
|   | ||||
| @@ -1,916 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # | ||||
| ############################################################################################ | ||||
| # The history of benchmark files: | ||||
| # [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID. | ||||
| # [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice. | ||||
| # | ||||
| # I'm still actively enhancing this benchmark. Please feel free to contact me if you have any question w.r.t. NAS-Bench-201. | ||||
| # | ||||
| import os, copy, random, torch, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict | ||||
| from collections import OrderedDict, defaultdict | ||||
|  | ||||
|  | ||||
| def print_information(information, extra_info=None, show=False): | ||||
|   dataset_names = information.get_dataset_names() | ||||
|   strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)] | ||||
|   def metric2str(loss, acc): | ||||
|     return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc) | ||||
|  | ||||
|   for ida, dataset in enumerate(dataset_names): | ||||
|     metric = information.get_compute_costs(dataset) | ||||
|     flop, param, latency = metric['flops'], metric['params'], metric['latency'] | ||||
|     str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None) | ||||
|     train_info = information.get_metrics(dataset, 'train') | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy'])) | ||||
|     elif dataset == 'cifar10': | ||||
|       test__info = information.get_metrics(dataset, 'ori-test') | ||||
|       str2 = '{:14s} train : [{:}], test  : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     else: | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       test__info = information.get_metrics(dataset, 'x-test') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     strings += [str1, str2] | ||||
|   if show: print('\n'.join(strings)) | ||||
|   return strings | ||||
|  | ||||
| """ | ||||
| This is the class for API of NAS-Bench-201. | ||||
| """ | ||||
| class NASBench201API(object): | ||||
|  | ||||
|   """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ | ||||
|   def __init__(self, file_path_or_dict: Union[Text, Dict], verbose: bool=True): | ||||
|     self.filename = None | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu') | ||||
|     elif isinstance(file_path_or_dict, dict): | ||||
|       file_path_or_dict = copy.deepcopy( file_path_or_dict ) | ||||
|     else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) | ||||
|     assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) | ||||
|     self.verbose = verbose # [TODO] a flag indicating whether to print more logs | ||||
|     keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') | ||||
|     for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
|     self.arch2infos_less = OrderedDict() | ||||
|     self.arch2infos_full = OrderedDict() | ||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|       all_info = file_path_or_dict['arch2infos'][xkey] | ||||
|       self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] ) | ||||
|       self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] ) | ||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||
|     self.archstr2index = {} | ||||
|     for idx, arch in enumerate(self.meta_archs): | ||||
|       #assert arch.tostr() not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch.tostr()]) | ||||
|       assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) | ||||
|       self.archstr2index[ arch ] = idx | ||||
|  | ||||
|   def __getitem__(self, index: int): | ||||
|     return copy.deepcopy( self.meta_archs[index] ) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.meta_archs) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) | ||||
|  | ||||
|   def random(self): | ||||
|     """Return a random index of all architectures.""" | ||||
|     return random.randint(0, len(self.meta_archs)-1) | ||||
|  | ||||
|   # This function is used to query the index of an architecture in the search space. | ||||
|   # The input arch can be an architecture string such as '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|' | ||||
|   # or an instance that has the 'tostr' function that can generate the architecture string. | ||||
|   # This function will return the index. | ||||
|   #   If return -1, it means this architecture is not in the search space. | ||||
|   #   Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space). | ||||
|   def query_index_by_arch(self, arch): | ||||
|     if isinstance(arch, str): | ||||
|       if arch in self.archstr2index: arch_index = self.archstr2index[ arch ] | ||||
|       else                         : arch_index = -1 | ||||
|     elif hasattr(arch, 'tostr'): | ||||
|       if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ] | ||||
|       else                                 : arch_index = -1 | ||||
|     else: arch_index = -1 | ||||
|     return arch_index | ||||
|  | ||||
|   def reload(self, archive_root: Text, index: int): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space. | ||||
|          It will load its data from 'archive_root'. | ||||
|     """ | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
|     xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index)) | ||||
|     assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index) | ||||
|     assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|     xdata = torch.load(xfile_path, map_location='cpu') | ||||
|     assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) | ||||
|     if index in self.arch2infos_less: del self.arch2infos_less[index] | ||||
|     if index in self.arch2infos_full: del self.arch2infos_full[index] | ||||
|     self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] ) | ||||
|     self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] ) | ||||
|  | ||||
|   def clear_params(self, index: int, use_12epochs_result: Union[bool, None]): | ||||
|     """Remove the architecture's weights to save memory. | ||||
|     :arg | ||||
|       index: the index of the target architecture | ||||
|       use_12epochs_result: a flag to controll how to clear the parameters. | ||||
|         -- None: clear all the weights in both `less` and `full`, which indicates the training hyper-parameters. | ||||
|         -- True: clear all the weights in arch2infos_less, which by default is 12-epoch-training result. | ||||
|         -- False: clear all the weights in arch2infos_full, which by default is 200-epoch-training result. | ||||
|     """ | ||||
|     if use_12epochs_result is None: | ||||
|       self.arch2infos_less[index].clear_params() | ||||
|       self.arch2infos_full[index].clear_params() | ||||
|     else: | ||||
|       if use_12epochs_result: arch2infos = self.arch2infos_less | ||||
|       else                  : arch2infos = self.arch2infos_full | ||||
|       arch2infos[index].clear_params() | ||||
|    | ||||
|   # This function is used to query the information of a specific archiitecture | ||||
|   # 'arch' can be an architecture index or an architecture string | ||||
|   # When use_12epochs_result=True, the hyper-parameters used to train a model are in 'configs/nas-benchmark/CIFAR.config' | ||||
|   # When use_12epochs_result=False, the hyper-parameters used to train a model are in 'configs/nas-benchmark/LESS.config' | ||||
|   # The difference between these two configurations are the number of training epochs, which is 200 in CIFAR.config and 12 in LESS.config. | ||||
|   def query_by_arch(self, arch, use_12epochs_result=False): | ||||
|     if isinstance(arch, int): | ||||
|       arch_index = arch | ||||
|     else: | ||||
|       arch_index = self.query_index_by_arch(arch) | ||||
|     if arch_index == -1: return None # the following two lines are used to support few training epochs | ||||
|     if use_12epochs_result: arch2infos = self.arch2infos_less | ||||
|     else                  : arch2infos = self.arch2infos_full | ||||
|     if arch_index in arch2infos: | ||||
|       strings = print_information(arch2infos[ arch_index ], 'arch-index={:}'.format(arch_index)) | ||||
|       return '\n'.join(strings) | ||||
|     else: | ||||
|       print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index)) | ||||
|       return None | ||||
|  | ||||
|   # This 'query_by_index' function is used to query information with the training of 12 epochs or 200 epochs. | ||||
|   # ------ | ||||
|   # If use_12epochs_result=True, we train the model by 12 epochs (see config in configs/nas-benchmark/LESS.config) | ||||
|   # If use_12epochs_result=False, we train the model by 200 epochs (see config in configs/nas-benchmark/CIFAR.config) | ||||
|   # ------ | ||||
|   # If dataname is None, return the ArchResults | ||||
|   # else, return a dict with all trials on that dataset (the key is the seed) | ||||
|   # Options are 'cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'. | ||||
|   #  -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|   #  -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|   #  -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|   #  -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|   def query_by_index(self, arch_index: int, dataname: Union[None, Text] = None, | ||||
|                      use_12epochs_result: bool = False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr) | ||||
|     archInfo = copy.deepcopy( arch2infos[ arch_index ] ) | ||||
|     if dataname is None: return archInfo | ||||
|     else: | ||||
|       assert dataname in archInfo.get_dataset_names(), 'invalid dataset-name : {:}'.format(dataname) | ||||
|       info = archInfo.query(dataname) | ||||
|       return info | ||||
|  | ||||
|   def query_meta_info_by_index(self, arch_index, use_12epochs_result=False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr) | ||||
|     archInfo = copy.deepcopy( arch2infos[ arch_index ] ) | ||||
|     return archInfo | ||||
|  | ||||
|   def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, use_12epochs_result=False): | ||||
|     """Find the architecture with the highest accuracy based on some constraints.""" | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     best_index, highest_accuracy = -1, None | ||||
|     for i, idx in enumerate(self.evaluated_indexes): | ||||
|       info = arch2infos[idx].get_compute_costs(dataset) | ||||
|       flop, param, latency = info['flops'], info['params'], info['latency'] | ||||
|       if FLOP_max  is not None and flop  > FLOP_max : continue | ||||
|       if Param_max is not None and param > Param_max: continue | ||||
|       xinfo = arch2infos[idx].get_metrics(dataset, metric_on_set) | ||||
|       loss, accuracy = xinfo['loss'], xinfo['accuracy'] | ||||
|       if best_index == -1: | ||||
|         best_index, highest_accuracy = idx, accuracy | ||||
|       elif highest_accuracy < accuracy: | ||||
|         best_index, highest_accuracy = idx, accuracy | ||||
|     return best_index, highest_accuracy | ||||
|  | ||||
|   def arch(self, index: int): | ||||
|     """Return the topology structure of the `index`-th architecture.""" | ||||
|     assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs)) | ||||
|     return copy.deepcopy(self.meta_archs[index]) | ||||
|  | ||||
|   def get_net_param(self, index, dataset, seed, use_12epochs_result=False): | ||||
|     """ | ||||
|       This function is used to obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed` | ||||
|       Args [seed]: | ||||
|         -- None : return a dict containing the trained weights of all trials, where each key is a seed and its corresponding value is the weights. | ||||
|         -- a interger : return the weights of a specific trial, whose seed is this interger. | ||||
|       Args [use_12epochs_result]: | ||||
|         -- True : train the model by 12 epochs | ||||
|         -- False : train the model by 200 epochs | ||||
|     """ | ||||
|     if use_12epochs_result: arch2infos = self.arch2infos_less | ||||
|     else: arch2infos = self.arch2infos_full | ||||
|     arch_result = arch2infos[index] | ||||
|     return arch_result.get_net_param(dataset, seed) | ||||
|  | ||||
|   def get_net_config(self, index: int, dataset: Text): | ||||
|     """ | ||||
|       This function is used to obtain the configuration for the `index`-th architecture on `dataset`. | ||||
|       Args [dataset] (4 possible options): | ||||
|         -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|         -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|         -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|       This function will return a dict. | ||||
|       ========= Some examlpes for using this function: | ||||
|       config = api.get_net_config(128, 'cifar10') | ||||
|     """ | ||||
|     archresult = self.arch2infos_full[index] | ||||
|     all_results = archresult.query(dataset, None) | ||||
|     if len(all_results) == 0: raise ValueError('can not find one valid trial for the {:}-th architecture on {:}'.format(index, dataset)) | ||||
|     for seed, result in all_results.items(): | ||||
|       return result.get_config(None) | ||||
|       #print ('SEED [{:}] : {:}'.format(seed, result)) | ||||
|     raise ValueError('Impossible to reach here!') | ||||
|  | ||||
|   def get_cost_info(self, index: int, dataset: Text, use_12epochs_result: bool = False) -> Dict[Text, float]: | ||||
|     """To obtain the cost metric for the `index`-th architecture on a dataset.""" | ||||
|     if use_12epochs_result: arch2infos = self.arch2infos_less | ||||
|     else: arch2infos = self.arch2infos_full | ||||
|     arch_result = arch2infos[index] | ||||
|     return arch_result.get_compute_costs(dataset) | ||||
|  | ||||
|   def get_latency(self, index: int, dataset: Text, use_12epochs_result: bool = False) -> float: | ||||
|     """ | ||||
|     To obtain the latency of the network (by default it will return the latency with the batch size of 256). | ||||
|     :param index: the index of the target architecture | ||||
|     :param dataset: the dataset name (cifar10-valid, cifar10, cifar100, ImageNet16-120) | ||||
|     :return: return a float value in seconds | ||||
|     """ | ||||
|     cost_dict = self.get_cost_info(index, dataset, use_12epochs_result) | ||||
|     return cost_dict['latency'] | ||||
|  | ||||
|   # obtain the metric for the `index`-th architecture | ||||
|   # `dataset` indicates the dataset: | ||||
|   #   'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set | ||||
|   #   'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set | ||||
|   #   'cifar100'       : using the proposed train set of CIFAR-100 as the training set | ||||
|   #   'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set | ||||
|   # `iepoch` indicates the index of training epochs from 0 to 11/199. | ||||
|   #   When iepoch=None, it will return the metric for the last training epoch | ||||
|   #   When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) | ||||
|   # `use_12epochs_result` indicates different hyper-parameters for training | ||||
|   #   When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs | ||||
|   #   When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs | ||||
|   # `is_random` | ||||
|   #   When is_random=True, the performance of a random architecture will be returned | ||||
|   #   When is_random=False, the performanceo of all trials will be averaged. | ||||
|   def get_more_info(self, index: int, dataset, iepoch=None, use_12epochs_result=False, is_random=True): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     # if randomly select one trial, select the seed at first | ||||
|     if isinstance(is_random, bool) and is_random: | ||||
|       seeds = archresult.get_dataset_seeds(dataset) | ||||
|       is_random = random.choice(seeds) | ||||
|     # collect the training information | ||||
|     train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random) | ||||
|     total = train_info['iepoch'] + 1 | ||||
|     xinfo = {'train-loss'    : train_info['loss'], | ||||
|              'train-accuracy': train_info['accuracy'], | ||||
|              'train-per-time': train_info['all_time'] / total, | ||||
|              'train-all-time': train_info['all_time']} | ||||
|     # collect the evaluation information | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       valtest_info = None | ||||
|     else: | ||||
|       try: # collect results on the proposed test set | ||||
|         if dataset == 'cifar10': | ||||
|           test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       try: # collect results on the proposed validation set | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         if dataset != 'cifar10': | ||||
|           valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           valtest_info = None | ||||
|       except: | ||||
|         valtest_info = None | ||||
|     if valid_info is not None: | ||||
|       xinfo['valid-loss'] = valid_info['loss'] | ||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total | ||||
|       xinfo['valid-all-time'] = valid_info['all_time'] | ||||
|     if test_info is not None: | ||||
|       xinfo['test-loss'] = test_info['loss'] | ||||
|       xinfo['test-accuracy'] = test_info['accuracy'] | ||||
|       xinfo['test-per-time'] = test_info['all_time'] / total | ||||
|       xinfo['test-all-time'] = test_info['all_time'] | ||||
|     if valtest_info is not None: | ||||
|       xinfo['valtest-loss'] = valtest_info['loss'] | ||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] | ||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total | ||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] | ||||
|     return xinfo | ||||
|   """ # The following logic is deprecated after March 15 2020, where the benchmark file upgrades from NAS-Bench-201-v1_0-e61699.pth to NAS-Bench-201-v1_1-096897.pth. | ||||
|   def get_more_info(self, index: int, dataset, iepoch=None, use_12epochs_result=False, is_random=True): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     # if randomly select one trial, select the seed at first | ||||
|     if isinstance(is_random, bool) and is_random: | ||||
|       seeds = archresult.get_dataset_seeds(dataset) | ||||
|       is_random = random.choice(seeds) | ||||
|     if dataset == 'cifar10-valid': | ||||
|       train_info = archresult.get_metrics(dataset, 'train'   , iepoch=iepoch, is_random=is_random) | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test__info = None | ||||
|       total      = train_info['iepoch'] + 1 | ||||
|       xifo = {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy'], | ||||
|               'train-per-time': None if train_info['all_time'] is None else train_info['all_time'] / total, | ||||
|               'train-all-time': train_info['all_time'], | ||||
|               'valid-loss'    : valid_info['loss'], | ||||
|               'valid-accuracy': valid_info['accuracy'], | ||||
|               'valid-all-time': valid_info['all_time'], | ||||
|               'valid-per-time': None if valid_info['all_time'] is None else valid_info['all_time'] / total} | ||||
|       if test__info is not None: | ||||
|         xifo['test-loss']     = test__info['loss'] | ||||
|         xifo['test-accuracy'] = test__info['accuracy'] | ||||
|       return xifo | ||||
|     else: | ||||
|       train_info = archresult.get_metrics(dataset, 'train'   , iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         if dataset == 'cifar10': | ||||
|           test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test__info = None | ||||
|       try: | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         est_valid_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         est_valid_info = None | ||||
|       xifo = {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy']} | ||||
|       if test__info is not None: | ||||
|         xifo['test-loss'] = test__info['loss'], | ||||
|         xifo['test-accuracy'] = test__info['accuracy'] | ||||
|       if valid_info is not None: | ||||
|         xifo['valid-loss'] = valid_info['loss'] | ||||
|         xifo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       if est_valid_info is not None: | ||||
|         xifo['est-valid-loss'] = est_valid_info['loss'] | ||||
|         xifo['est-valid-accuracy'] = est_valid_info['accuracy'] | ||||
|       return xifo | ||||
|   """ | ||||
|  | ||||
|   def show(self, index: int = -1) -> None: | ||||
|     """ | ||||
|     This function will print the information of a specific (or all) architecture(s). | ||||
|  | ||||
|     :param index: If the index < 0: it will loop for all architectures and print their information one by one. | ||||
|                   else: it will print the information of the 'index'-th archiitecture. | ||||
|     :return: nothing | ||||
|     """ | ||||
|     if index < 0: # show all architectures | ||||
|       print(self) | ||||
|       for i, idx in enumerate(self.evaluated_indexes): | ||||
|         print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10) | ||||
|         print('arch : {:}'.format(self.meta_archs[idx])) | ||||
|         strings = print_information(self.arch2infos_full[idx]) | ||||
|         print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_full[idx].get_total_epoch()) + '>' * 40) | ||||
|         print('\n'.join(strings)) | ||||
|         strings = print_information(self.arch2infos_less[idx]) | ||||
|         print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_less[idx].get_total_epoch()) + '>' * 40) | ||||
|         print('\n'.join(strings)) | ||||
|         print('<' * 40 + '------------' + '<' * 40) | ||||
|     else: | ||||
|       if 0 <= index < len(self.meta_archs): | ||||
|         if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index)) | ||||
|         else: | ||||
|           strings = print_information(self.arch2infos_full[index]) | ||||
|           print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_full[index].get_total_epoch()) + '>' * 40) | ||||
|           print('\n'.join(strings)) | ||||
|           strings = print_information(self.arch2infos_less[index]) | ||||
|           print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_less[index].get_total_epoch()) + '>' * 40) | ||||
|           print('\n'.join(strings)) | ||||
|           print('<' * 40 + '------------' + '<' * 40) | ||||
|       else: | ||||
|         print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs))) | ||||
|  | ||||
|   def statistics(self, dataset: Text, use_12epochs_result: bool) -> Dict[int, int]: | ||||
|     """ | ||||
|     This function will count the number of total trials. | ||||
|     """ | ||||
|     valid_datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|     if dataset not in valid_datasets: | ||||
|       raise ValueError('{:} not in {:}'.format(dataset, valid_datasets)) | ||||
|     if use_12epochs_result: arch2infos = self.arch2infos_less | ||||
|     else                  : arch2infos = self.arch2infos_full | ||||
|     nums = defaultdict(lambda: 0) | ||||
|     for index in range(len(self)): | ||||
|       archInfo = arch2infos[index] | ||||
|       dataset_seed = archInfo.dataset_seed | ||||
|       if dataset not in dataset_seed: | ||||
|         nums[0] += 1 | ||||
|       else: | ||||
|         nums[len(dataset_seed[dataset])] += 1 | ||||
|     return dict(nums) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2lists(arch_str: Text) -> List[tuple]: | ||||
|     """ | ||||
|     This function shows how to read the string-based architecture encoding. | ||||
|       It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py` | ||||
|  | ||||
|     :param | ||||
|       arch_str: the input is a string indicates the architecture topology, such as | ||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||
|     :return: a list of tuple, contains multiple (op, input_node_index) pairs. | ||||
|  | ||||
|     :usage | ||||
|       arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) | ||||
|       print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list | ||||
|       for i, node in enumerate(arch): | ||||
|         print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node)) | ||||
|     """ | ||||
|     node_strs = arch_str.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(node_strs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return genotypes | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2matrix(arch_str: Text, | ||||
|                  search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray: | ||||
|     """ | ||||
|     This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101. | ||||
|  | ||||
|     :param | ||||
|       arch_str: the input is a string indicates the architecture topology, such as | ||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||
|       search_space: a list of operation string, the default list is the search space for NAS-Bench-201 | ||||
|         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24 | ||||
|     :return | ||||
|       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology | ||||
|     :usage | ||||
|       matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) | ||||
|       This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful). | ||||
|          [ [0, 0, 0, 0],  # the first line represents the input (0-th) node | ||||
|            [2, 0, 0, 0],  # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node ) | ||||
|            [0, 0, 0, 0],  # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) | ||||
|            [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node ) | ||||
|       In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect', | ||||
|          2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'. | ||||
|     :(NOTE) | ||||
|       If a node has two input-edges from the same node, this function does not work. One edge will be overlapped. | ||||
|     """ | ||||
|     node_strs = arch_str.split('+') | ||||
|     num_nodes = len(node_strs) + 1 | ||||
|     matrix = np.zeros((num_nodes, num_nodes)) | ||||
|     for i, node_str in enumerate(node_strs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       for xi in inputs: | ||||
|         op, idx = xi.split('~') | ||||
|         if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space)) | ||||
|         op_idx, node_idx = search_space.index(op), int(idx) | ||||
|         matrix[i+1, node_idx] = op_idx | ||||
|     return matrix | ||||
|  | ||||
|  | ||||
| class ArchResults(object): | ||||
|  | ||||
|   def __init__(self, arch_index, arch_str): | ||||
|     self.arch_index   = int(arch_index) | ||||
|     self.arch_str     = copy.deepcopy(arch_str) | ||||
|     self.all_results  = dict() | ||||
|     self.dataset_seed = dict() | ||||
|     self.clear_net_done = False | ||||
|  | ||||
|   def get_compute_costs(self, dataset): | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|  | ||||
|     flops     = [result.flop for result in results] | ||||
|     params    = [result.params for result in results] | ||||
|     latencies = [result.get_latency() for result in results] | ||||
|     latencies = [x for x in latencies if x > 0] | ||||
|     mean_latency = np.mean(latencies) if len(latencies) > 0 else None | ||||
|     time_infos = defaultdict(list) | ||||
|     for result in results: | ||||
|       time_info = result.get_times() | ||||
|       for key, value in time_info.items(): time_infos[key].append( value ) | ||||
|       | ||||
|     info = {'flops'  : np.mean(flops), | ||||
|             'params' : np.mean(params), | ||||
|             'latency': mean_latency} | ||||
|     for key, value in time_infos.items(): | ||||
|       if len(value) > 0 and value[0] is not None: | ||||
|         info[key] = np.mean(value) | ||||
|       else: info[key] = None | ||||
|     return info | ||||
|  | ||||
|   def get_metrics(self, dataset, setname, iepoch=None, is_random=False): | ||||
|     """ | ||||
|       This `get_metrics` function is used to obtain obtain the loss, accuracy, etc information on a specific dataset. | ||||
|       If not specify, each set refer to the proposed split in NAS-Bench-201 paper. | ||||
|       If some args return None or raise error, then it is not avaliable. | ||||
|       ======================================== | ||||
|       Args [dataset] (4 possible options): | ||||
|         -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|         -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|         -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|       Args [setname] (each dataset has different setnames): | ||||
|         -- When dataset = cifar10-valid, you can use 'train', 'x-valid', 'ori-test' | ||||
|         ------ 'train' : the metric on the training set. | ||||
|         ------ 'x-valid' : the metric on the validation set. | ||||
|         ------ 'ori-test' : the metric on the test set. | ||||
|         -- When dataset = cifar10, you can use 'train', 'ori-test'. | ||||
|         ------ 'train' : the metric on the training + validation set. | ||||
|         ------ 'ori-test' : the metric on the test set. | ||||
|         -- When dataset = cifar100 or ImageNet16-120, you can use 'train', 'ori-test', 'x-valid', 'x-test' | ||||
|         ------ 'train' : the metric on the training set. | ||||
|         ------ 'x-valid' : the metric on the validation set. | ||||
|         ------ 'x-test' : the metric on the test set. | ||||
|         ------ 'ori-test' : the metric on the validation + test set. | ||||
|       Args [iepoch] (None or an integer in [0, the-number-of-total-training-epochs) | ||||
|         ------ None : return the metric after the last training epoch. | ||||
|         ------ an integer i : return the metric after the i-th training epoch. | ||||
|       Args [is_random]: | ||||
|         ------ True : return the metric of a randomly selected trial. | ||||
|         ------ False : return the averaged metric of all avaliable trials. | ||||
|         ------ an integer indicating the 'seed' value : return the metric of a specific trial (whose random seed is 'is_random'). | ||||
|     """ | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|     infos   = defaultdict(list) | ||||
|     for result in results: | ||||
|       if setname == 'train': | ||||
|         info = result.get_train(iepoch) | ||||
|       else: | ||||
|         info = result.get_eval(setname, iepoch) | ||||
|       for key, value in info.items(): infos[key].append( value ) | ||||
|     return_info = dict() | ||||
|     if isinstance(is_random, bool) and is_random: # randomly select one | ||||
|       index = random.randint(0, len(results)-1) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     elif isinstance(is_random, bool) and not is_random: # average | ||||
|       for key, value in infos.items(): | ||||
|         if len(value) > 0 and value[0] is not None: | ||||
|           return_info[key] = np.mean(value) | ||||
|         else: return_info[key] = None | ||||
|     elif isinstance(is_random, int): # specify the seed | ||||
|       if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds)) | ||||
|       index = x_seeds.index(is_random) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     else: | ||||
|       raise ValueError('invalid value for is_random: {:}'.format(is_random)) | ||||
|     return return_info | ||||
|  | ||||
|   def show(self, is_print=False): | ||||
|     return print_information(self, None, is_print) | ||||
|  | ||||
|   def get_dataset_names(self): | ||||
|     return list(self.dataset_seed.keys()) | ||||
|  | ||||
|   def get_dataset_seeds(self, dataset): | ||||
|     return copy.deepcopy( self.dataset_seed[dataset] ) | ||||
|  | ||||
|   def get_net_param(self, dataset: Text, seed: Union[None, int] =None): | ||||
|     """ | ||||
|     This function will return the trained network's weights on the 'dataset'. | ||||
|     :arg | ||||
|       dataset: one of 'cifar10-valid', 'cifar10', 'cifar100', and 'ImageNet16-120'. | ||||
|       seed: an integer indicates the seed value or None that indicates returing all trials. | ||||
|     """ | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds} | ||||
|     else: | ||||
|       return self.all_results[(dataset, seed)].get_net_param() | ||||
|  | ||||
|   def reset_latency(self, dataset: Text, seed: Union[None, Text], latency: float) -> None: | ||||
|     """This function is used to reset the latency in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].update_latency([latency]) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].update_latency([latency]) | ||||
|  | ||||
|   def reset_pseudo_train_times(self, dataset: Text, seed: Union[None, Text], estimated_per_epoch_time: float) -> None: | ||||
|     """This function is used to reset the train-times in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) | ||||
|  | ||||
|   def reset_pseudo_eval_times(self, dataset: Text, seed: Union[None, Text], eval_name: Text, estimated_per_epoch_time: float) -> None: | ||||
|     """This function is used to reset the eval-times in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) | ||||
|  | ||||
|   def get_latency(self, dataset: Text) -> float: | ||||
|     """Get the latency of a model on the target dataset. [Timestamp: 2020.03.09]""" | ||||
|     latencies = [] | ||||
|     for seed in self.dataset_seed[dataset]: | ||||
|       latency = self.all_results[(dataset, seed)].get_latency() | ||||
|       if not isinstance(latency, float) or latency <= 0: | ||||
|         raise ValueError('invalid latency of {:} for {:} with {:}'.format(dataset)) | ||||
|       latencies.append(latency) | ||||
|     return sum(latencies) / len(latencies) | ||||
|  | ||||
|   def get_total_epoch(self, dataset=None): | ||||
|     """Return the total number of training epochs.""" | ||||
|     if dataset is None: | ||||
|       epochss = [] | ||||
|       for xdata, x_seeds in self.dataset_seed.items(): | ||||
|         epochss += [self.all_results[(xdata, seed)].get_total_epoch() for seed in x_seeds] | ||||
|     elif isinstance(dataset, str): | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       epochss = [self.all_results[(dataset, seed)].get_total_epoch() for seed in x_seeds] | ||||
|     else: | ||||
|       raise ValueError('invalid dataset={:}'.format(dataset)) | ||||
|     if len(set(epochss)) > 1: raise ValueError('Each trial mush have the same number of training epochs : {:}'.format(epochss)) | ||||
|     return epochss[-1] | ||||
|  | ||||
|   def query(self, dataset, seed=None): | ||||
|     """Return the ResultsCount object (containing all information of a single trial) for 'dataset' and 'seed'""" | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       return {seed: self.all_results[(dataset, seed)] for seed in x_seeds} | ||||
|     else: | ||||
|       return self.all_results[(dataset, seed)] | ||||
|  | ||||
|   def arch_idx_str(self): | ||||
|     return '{:06d}'.format(self.arch_index) | ||||
|  | ||||
|   def update(self, dataset_name, seed, result): | ||||
|     if dataset_name not in self.dataset_seed: | ||||
|       self.dataset_seed[dataset_name] = [] | ||||
|     assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name) | ||||
|     self.dataset_seed[ dataset_name ].append( seed ) | ||||
|     self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] ) | ||||
|     assert (dataset_name, seed) not in self.all_results | ||||
|     self.all_results[ (dataset_name, seed) ] = result | ||||
|     self.clear_net_done = False | ||||
|  | ||||
|   def state_dict(self): | ||||
|     state_dict = dict() | ||||
|     for key, value in self.__dict__.items(): | ||||
|       if key == 'all_results': # contain the class of ResultsCount | ||||
|         xvalue = dict() | ||||
|         assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) | ||||
|         for _k, _v in value.items(): | ||||
|           assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v)) | ||||
|           xvalue[_k] = _v.state_dict() | ||||
|       else: | ||||
|         xvalue = value | ||||
|       state_dict[key] = xvalue | ||||
|     return state_dict | ||||
|  | ||||
|   def load_state_dict(self, state_dict): | ||||
|     new_state_dict = dict() | ||||
|     for key, value in state_dict.items(): | ||||
|       if key == 'all_results': # to convert to the class of ResultsCount | ||||
|         xvalue = dict() | ||||
|         assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) | ||||
|         for _k, _v in value.items(): | ||||
|           xvalue[_k] = ResultsCount.create_from_state_dict(_v) | ||||
|       else: xvalue = value | ||||
|       new_state_dict[key] = xvalue | ||||
|     self.__dict__.update(new_state_dict) | ||||
|  | ||||
|   @staticmethod | ||||
|   def create_from_state_dict(state_dict_or_file): | ||||
|     x = ArchResults(-1, -1) | ||||
|     if isinstance(state_dict_or_file, str): # a file path | ||||
|       state_dict = torch.load(state_dict_or_file, map_location='cpu') | ||||
|     elif isinstance(state_dict_or_file, dict): | ||||
|       state_dict = state_dict_or_file | ||||
|     else: | ||||
|       raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file))) | ||||
|     x.load_state_dict(state_dict) | ||||
|     return x | ||||
|  | ||||
|   # This function is used to clear the weights saved in each 'result' | ||||
|   # This can help reduce the memory footprint. | ||||
|   def clear_params(self): | ||||
|     for key, result in self.all_results.items(): | ||||
|       del result.net_state_dict | ||||
|       result.net_state_dict = None | ||||
|     self.clear_net_done = True | ||||
|  | ||||
|   def debug_test(self): | ||||
|     """This function is used for me to debug and test, which will call most methods.""" | ||||
|     all_dataset = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|     for dataset in all_dataset: | ||||
|       print('---->>>> {:}'.format(dataset)) | ||||
|       print('The latency on {:} is {:} s'.format(dataset, self.get_latency(dataset))) | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         result = self.all_results[(dataset, seed)] | ||||
|         print('  ==>> result = {:}'.format(result)) | ||||
|         print('  ==>> cost = {:}'.format(result.get_times())) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done)) | ||||
|  | ||||
|  | ||||
| """ | ||||
| This class (ResultsCount) is used to save the information of one trial for a single architecture. | ||||
| I did not write much comment for this class, because it is the lowest-level class in NAS-Bench-201 API, which will be rarely called. | ||||
| If you have any question regarding this class, please open an issue or email me. | ||||
| """ | ||||
| class ResultsCount(object): | ||||
|  | ||||
|   def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency): | ||||
|     self.name           = name | ||||
|     self.net_state_dict = state_dict | ||||
|     self.train_acc1es = copy.deepcopy(train_accs) | ||||
|     self.train_acc5es = None | ||||
|     self.train_losses = copy.deepcopy(train_losses) | ||||
|     self.train_times  = None | ||||
|     self.arch_config  = copy.deepcopy(arch_config) | ||||
|     self.params     = params | ||||
|     self.flop       = flop | ||||
|     self.seed       = seed | ||||
|     self.epochs     = epochs | ||||
|     self.latency    = latency | ||||
|     # evaluation results | ||||
|     self.reset_eval() | ||||
|  | ||||
|   def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times) -> None: | ||||
|     self.train_acc1es = train_acc1es | ||||
|     self.train_acc5es = train_acc5es | ||||
|     self.train_losses = train_losses | ||||
|     self.train_times  = train_times | ||||
|  | ||||
|   def reset_pseudo_train_times(self, estimated_per_epoch_time: float) -> None: | ||||
|     """Assign the training times.""" | ||||
|     train_times = OrderedDict() | ||||
|     for i in range(self.epochs): | ||||
|       train_times[i] = estimated_per_epoch_time | ||||
|     self.train_times = train_times | ||||
|  | ||||
|   def reset_pseudo_eval_times(self, eval_name: Text, estimated_per_epoch_time: float) -> None: | ||||
|     """Assign the evaluation times.""" | ||||
|     if eval_name not in self.eval_names: raise ValueError('invalid eval name : {:}'.format(eval_name)) | ||||
|     for i in range(self.epochs): | ||||
|       self.eval_times['{:}@{:}'.format(eval_name,i)] = estimated_per_epoch_time | ||||
|  | ||||
|   def reset_eval(self): | ||||
|     self.eval_names  = [] | ||||
|     self.eval_acc1es = {} | ||||
|     self.eval_times  = {} | ||||
|     self.eval_losses = {} | ||||
|  | ||||
|   def update_latency(self, latency): | ||||
|     self.latency = copy.deepcopy( latency ) | ||||
|  | ||||
|   def get_latency(self) -> float: | ||||
|     """Return the latency value in seconds. -1 represents not avaliable ; otherwise it should be a float value""" | ||||
|     if self.latency is None: return -1.0 | ||||
|     else: return sum(self.latency) / len(self.latency) | ||||
|  | ||||
|   def update_eval(self, accs, losses, times):  # new version | ||||
|     data_names = set([x.split('@')[0] for x in accs.keys()]) | ||||
|     for data_name in data_names: | ||||
|       assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name) | ||||
|       self.eval_names.append( data_name ) | ||||
|       for iepoch in range(self.epochs): | ||||
|         xkey = '{:}@{:}'.format(data_name, iepoch) | ||||
|         self.eval_acc1es[ xkey ] = accs[ xkey ] | ||||
|         self.eval_losses[ xkey ] = losses[ xkey ] | ||||
|         self.eval_times [ xkey ] = times[ xkey ] | ||||
|  | ||||
|   def update_OLD_eval(self, name, accs, losses): # old version | ||||
|     assert name not in self.eval_names, '{:} has already added'.format(name) | ||||
|     self.eval_names.append( name ) | ||||
|     for iepoch in range(self.epochs): | ||||
|       if iepoch in accs: | ||||
|         self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch] | ||||
|         self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch] | ||||
|  | ||||
|   def __repr__(self): | ||||
|     num_eval = len(self.eval_names) | ||||
|     set_name = '[' + ', '.join(self.eval_names) + ']' | ||||
|     return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name)) | ||||
|  | ||||
|   def get_total_epoch(self): | ||||
|     return copy.deepcopy(self.epochs) | ||||
|  | ||||
|   def get_times(self): | ||||
|     """Obtain the information regarding both training and evaluation time.""" | ||||
|     if self.train_times is not None and isinstance(self.train_times, dict): | ||||
|       train_times = list( self.train_times.values() ) | ||||
|       time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)} | ||||
|     else: | ||||
|       time_info = {'T-train@epoch':                 None, 'T-train@total':               None } | ||||
|     for name in self.eval_names: | ||||
|       try: | ||||
|         xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)] | ||||
|         time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes) | ||||
|         time_info['T-{:}@total'.format(name)] = np.sum(xtimes) | ||||
|       except: | ||||
|         time_info['T-{:}@epoch'.format(name)] = None | ||||
|         time_info['T-{:}@total'.format(name)] = None | ||||
|     return time_info | ||||
|  | ||||
|   def get_eval_set(self): | ||||
|     return self.eval_names | ||||
|  | ||||
|   # get the training information | ||||
|   def get_train(self, iepoch=None): | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     if self.train_times is not None: | ||||
|       xtime = self.train_times[iepoch] | ||||
|       atime = sum([self.train_times[i] for i in range(iepoch+1)]) | ||||
|     else: xtime, atime = None, None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.train_losses[iepoch], | ||||
|             'accuracy': self.train_acc1es[iepoch], | ||||
|             'cur_time': xtime, | ||||
|             'all_time': atime} | ||||
|  | ||||
|   def get_eval(self, name, iepoch=None): | ||||
|     """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument).""" | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: | ||||
|       xtime = self.eval_times['{:}@{:}'.format(name,iepoch)] | ||||
|       atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)]) | ||||
|     else: xtime, atime = None, None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.eval_losses['{:}@{:}'.format(name,iepoch)], | ||||
|             'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)], | ||||
|             'cur_time': xtime, | ||||
|             'all_time': atime} | ||||
|  | ||||
|   def get_net_param(self, clone=False): | ||||
|     if clone: return copy.deepcopy(self.net_state_dict) | ||||
|     else: return self.net_state_dict | ||||
|  | ||||
|   def get_config(self, str2structure): | ||||
|     """This function is used to obtain the config dict for this architecture.""" | ||||
|     if str2structure is None: | ||||
|       return {'name': 'infer.tiny', 'C': self.arch_config['channel'], | ||||
|               'N'   : self.arch_config['num_cells'], | ||||
|               'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']} | ||||
|     else: | ||||
|       return {'name': 'infer.tiny', 'C': self.arch_config['channel'], | ||||
|               'N'   : self.arch_config['num_cells'], | ||||
|               'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']} | ||||
|  | ||||
|   def state_dict(self): | ||||
|     _state_dict = {key: value for key, value in self.__dict__.items()} | ||||
|     return _state_dict | ||||
|  | ||||
|   def load_state_dict(self, state_dict): | ||||
|     self.__dict__.update(state_dict) | ||||
|  | ||||
|   @staticmethod | ||||
|   def create_from_state_dict(state_dict): | ||||
|     x = ResultsCount(None, None, None, None, None, None, None, None, None, None) | ||||
|     x.load_state_dict(state_dict) | ||||
|     return x | ||||
							
								
								
									
										269
									
								
								lib/nas_201_api/api_201.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										269
									
								
								lib/nas_201_api/api_201.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,269 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # | ||||
| ############################################################################################ | ||||
| # The history of benchmark files: | ||||
| # [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID. | ||||
| # [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice. | ||||
| # | ||||
| # I'm still actively enhancing this benchmark. Please feel free to contact me if you have any question w.r.t. NAS-Bench-201. | ||||
| # | ||||
| import os, copy, random, torch, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
|  | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| from .api_utils import remap_dataset_set_names | ||||
|  | ||||
|  | ||||
| ALL_BENCHMARK_FILES = ['NAS-Bench-201-v1_0-e61699.pth', 'NAS-Bench-201-v1_1-096897.pth'] | ||||
| ALL_ARCHIVE_DIRS = ['NAS-Bench-201-v1_1-archive'] | ||||
|  | ||||
|  | ||||
| def print_information(information, extra_info=None, show=False): | ||||
|   dataset_names = information.get_dataset_names() | ||||
|   strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)] | ||||
|   def metric2str(loss, acc): | ||||
|     return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc) | ||||
|  | ||||
|   for ida, dataset in enumerate(dataset_names): | ||||
|     metric = information.get_compute_costs(dataset) | ||||
|     flop, param, latency = metric['flops'], metric['params'], metric['latency'] | ||||
|     str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None) | ||||
|     train_info = information.get_metrics(dataset, 'train') | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy'])) | ||||
|     elif dataset == 'cifar10': | ||||
|       test__info = information.get_metrics(dataset, 'ori-test') | ||||
|       str2 = '{:14s} train : [{:}], test  : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     else: | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       test__info = information.get_metrics(dataset, 'x-test') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     strings += [str1, str2] | ||||
|   if show: print('\n'.join(strings)) | ||||
|   return strings | ||||
|  | ||||
|  | ||||
| """ | ||||
| This is the class for the API of NAS-Bench-201. | ||||
| """ | ||||
| class NASBench201API(NASBenchMetaAPI): | ||||
|  | ||||
|   """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ | ||||
|   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, | ||||
|                verbose: bool=True): | ||||
|     self.filename = None | ||||
|     if file_path_or_dict is None: | ||||
|       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) | ||||
|       print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict)) | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu') | ||||
|     elif isinstance(file_path_or_dict, dict): | ||||
|       file_path_or_dict = copy.deepcopy(file_path_or_dict) | ||||
|     else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) | ||||
|     assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) | ||||
|     self.verbose = verbose # [TODO] a flag indicating whether to print more logs | ||||
|     keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') | ||||
|     for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||
|     self.arch2infos_dict = OrderedDict() | ||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|       all_info = file_path_or_dict['arch2infos'][xkey] | ||||
|       hp2archres = OrderedDict() | ||||
|       # self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] ) | ||||
|       # self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] ) | ||||
|       hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less']) | ||||
|       hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full']) | ||||
|       self.arch2infos_dict[xkey] = hp2archres | ||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||
|     self.archstr2index = {} | ||||
|     for idx, arch in enumerate(self.meta_archs): | ||||
|       assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) | ||||
|       self.archstr2index[ arch ] = idx | ||||
|  | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space. | ||||
|          It will load its data from 'archive_root'. | ||||
|     """ | ||||
|     if archive_root is None: | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1]) | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
|     if index is None: | ||||
|       indexes = list(range(len(self))) | ||||
|     else: | ||||
|       indexes = [index] | ||||
|     for idx in indexes: | ||||
|       assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx) | ||||
|       xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx)) | ||||
|       assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|       xdata = torch.load(xfile_path, map_location='cpu') | ||||
|       assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) | ||||
|       hp2archres = OrderedDict() | ||||
|       hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less']) | ||||
|       hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full']) | ||||
|       self.arch2infos_dict[idx] = hp2archres | ||||
|  | ||||
|   def query_info_str_by_arch(self, arch, hp: Text='12'): | ||||
|     """ This function is used to query the information of a specific architecture | ||||
|         'arch' can be an architecture index or an architecture string | ||||
|         When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config' | ||||
|         When hp=200, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/200E.config' | ||||
|         The difference between these three configurations are the number of training epochs. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||
|     self._query_info_str_by_arch(arch, hp, print_information) | ||||
|  | ||||
|   # obtain the metric for the `index`-th architecture | ||||
|   # `dataset` indicates the dataset: | ||||
|   #   'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set | ||||
|   #   'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set | ||||
|   #   'cifar100'       : using the proposed train set of CIFAR-100 as the training set | ||||
|   #   'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set | ||||
|   # `iepoch` indicates the index of training epochs from 0 to 11/199. | ||||
|   #   When iepoch=None, it will return the metric for the last training epoch | ||||
|   #   When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) | ||||
|   # `use_12epochs_result` indicates different hyper-parameters for training | ||||
|   #   When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs | ||||
|   #   When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs | ||||
|   # `is_random` | ||||
|   #   When is_random=True, the performance of a random architecture will be returned | ||||
|   #   When is_random=False, the performanceo of all trials will be averaged. | ||||
|   def get_more_info(self, index: int, dataset, iepoch=None, hp='12', is_random=True): | ||||
|     if self.verbose: | ||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||
|     archresult = self.arch2infos_dict[index][str(hp)] | ||||
|     # if randomly select one trial, select the seed at first | ||||
|     if isinstance(is_random, bool) and is_random: | ||||
|       seeds = archresult.get_dataset_seeds(dataset) | ||||
|       is_random = random.choice(seeds) | ||||
|     # collect the training information | ||||
|     train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random) | ||||
|     total = train_info['iepoch'] + 1 | ||||
|     xinfo = {'train-loss'    : train_info['loss'], | ||||
|              'train-accuracy': train_info['accuracy'], | ||||
|              'train-per-time': train_info['all_time'] / total if train_info['all_time'] is not None else None, | ||||
|              'train-all-time': train_info['all_time']} | ||||
|     # collect the evaluation information | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       valtest_info = None | ||||
|     else: | ||||
|       try: # collect results on the proposed test set | ||||
|         if dataset == 'cifar10': | ||||
|           test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       try: # collect results on the proposed validation set | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         if dataset != 'cifar10': | ||||
|           valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           valtest_info = None | ||||
|       except: | ||||
|         valtest_info = None | ||||
|     if valid_info is not None: | ||||
|       xinfo['valid-loss'] = valid_info['loss'] | ||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total | ||||
|       xinfo['valid-all-time'] = valid_info['all_time'] | ||||
|     if test_info is not None: | ||||
|       xinfo['test-loss'] = test_info['loss'] | ||||
|       xinfo['test-accuracy'] = test_info['accuracy'] | ||||
|       xinfo['test-per-time'] = test_info['all_time'] / total | ||||
|       xinfo['test-all-time'] = test_info['all_time'] | ||||
|     if valtest_info is not None: | ||||
|       xinfo['valtest-loss'] = valtest_info['loss'] | ||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] | ||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total | ||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] | ||||
|     return xinfo | ||||
|  | ||||
|   def show(self, index: int = -1) -> None: | ||||
|     """This function will print the information of a specific (or all) architecture(s).""" | ||||
|     self._show(index, print_information) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2lists(arch_str: Text) -> List[tuple]: | ||||
|     """ | ||||
|     This function shows how to read the string-based architecture encoding. | ||||
|       It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py` | ||||
|  | ||||
|     :param | ||||
|       arch_str: the input is a string indicates the architecture topology, such as | ||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||
|     :return: a list of tuple, contains multiple (op, input_node_index) pairs. | ||||
|  | ||||
|     :usage | ||||
|       arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) | ||||
|       print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list | ||||
|       for i, node in enumerate(arch): | ||||
|         print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node)) | ||||
|     """ | ||||
|     node_strs = arch_str.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(node_strs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return genotypes | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2matrix(arch_str: Text, | ||||
|                  search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray: | ||||
|     """ | ||||
|     This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101. | ||||
|  | ||||
|     :param | ||||
|       arch_str: the input is a string indicates the architecture topology, such as | ||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| | ||||
|       search_space: a list of operation string, the default list is the search space for NAS-Bench-201 | ||||
|         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24 | ||||
|     :return | ||||
|       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology | ||||
|     :usage | ||||
|       matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) | ||||
|       This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful). | ||||
|          [ [0, 0, 0, 0],  # the first line represents the input (0-th) node | ||||
|            [2, 0, 0, 0],  # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node ) | ||||
|            [0, 0, 0, 0],  # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) | ||||
|            [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node ) | ||||
|       In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect', | ||||
|          2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'. | ||||
|     :(NOTE) | ||||
|       If a node has two input-edges from the same node, this function does not work. One edge will be overlapped. | ||||
|     """ | ||||
|     node_strs = arch_str.split('+') | ||||
|     num_nodes = len(node_strs) + 1 | ||||
|     matrix = np.zeros((num_nodes, num_nodes)) | ||||
|     for i, node_str in enumerate(node_strs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       for xi in inputs: | ||||
|         op, idx = xi.split('~') | ||||
|         if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space)) | ||||
|         op_idx, node_idx = search_space.index(op), int(idx) | ||||
|         matrix[i+1, node_idx] = op_idx | ||||
|     return matrix | ||||
|  | ||||
							
								
								
									
										215
									
								
								lib/nas_201_api/api_301.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										215
									
								
								lib/nas_201_api/api_301.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,215 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-301, coming soon. | ||||
| ############################################################################################ | ||||
| # The history of benchmark files: | ||||
| # [2020.06.30] NAS-Bench-301-v1_0 | ||||
| #  | ||||
| import os, copy, random, torch, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
| from .api_utils import ArchResults | ||||
| from .api_utils import NASBenchMetaAPI | ||||
| from .api_utils import remap_dataset_set_names | ||||
|  | ||||
|  | ||||
| ALL_BENCHMARK_FILES = ['NAS-Bench-301-v1_0-363be7.pth'] | ||||
| ALL_ARCHIVE_DIRS = ['NAS-Bench-301-v1_0-archive'] | ||||
|  | ||||
|  | ||||
| def print_information(information, extra_info=None, show=False): | ||||
|   dataset_names = information.get_dataset_names() | ||||
|   strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)] | ||||
|   def metric2str(loss, acc): | ||||
|     return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc) | ||||
|  | ||||
|   for ida, dataset in enumerate(dataset_names): | ||||
|     metric = information.get_compute_costs(dataset) | ||||
|     flop, param, latency = metric['flops'], metric['params'], metric['latency'] | ||||
|     str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None) | ||||
|     train_info = information.get_metrics(dataset, 'train') | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       test__info = information.get_metrics(dataset, 'ori-test') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format( | ||||
|                 dataset, metric2str(train_info['loss'], train_info['accuracy']), | ||||
|                 metric2str(valid_info['loss'], valid_info['accuracy']), | ||||
|                 metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     elif dataset == 'cifar10': | ||||
|       test__info = information.get_metrics(dataset, 'ori-test') | ||||
|       str2 = '{:14s} train : [{:}], test  : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     else: | ||||
|       valid_info = information.get_metrics(dataset, 'x-valid') | ||||
|       test__info = information.get_metrics(dataset, 'x-test') | ||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) | ||||
|     strings += [str1, str2] | ||||
|   if show: print('\n'.join(strings)) | ||||
|   return strings | ||||
|  | ||||
|  | ||||
| """ | ||||
| This is the class for the API of NAS-Bench-301. | ||||
| """ | ||||
| class NASBench301API(NASBenchMetaAPI): | ||||
|  | ||||
|   """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ | ||||
|   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): | ||||
|     self.filename = None | ||||
|     if file_path_or_dict is None: | ||||
|       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) | ||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||
|       file_path_or_dict = str(file_path_or_dict) | ||||
|       if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       self.filename = Path(file_path_or_dict).name | ||||
|       file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu') | ||||
|     elif isinstance(file_path_or_dict, dict): | ||||
|       file_path_or_dict = copy.deepcopy( file_path_or_dict ) | ||||
|     else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) | ||||
|     assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) | ||||
|     self.verbose = verbose # [TODO] a flag indicating whether to print more logs | ||||
|     keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') | ||||
|     for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||
|     self.arch2infos_dict = OrderedDict() | ||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|       all_infos = file_path_or_dict['arch2infos'][xkey] | ||||
|       hp2archres = OrderedDict() | ||||
|       for hp_key, results in all_infos.items(): | ||||
|         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||
|       self.arch2infos_dict[xkey] = hp2archres | ||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||
|     self.archstr2index = {} | ||||
|     for idx, arch in enumerate(self.meta_archs): | ||||
|       assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) | ||||
|       self.archstr2index[ arch ] = idx | ||||
|     if self.verbose: | ||||
|       print('Create NAS-Bench-301 done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs))) | ||||
|  | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'. | ||||
|        If index is None, overwrite all ckps. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index)) | ||||
|     if archive_root is None: | ||||
|       archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1]) | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
|     if index is None: | ||||
|       indexes = list(range(len(self))) | ||||
|     else: | ||||
|       indexes = [index] | ||||
|     for idx in indexes: | ||||
|       assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx) | ||||
|       xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx)) | ||||
|       if not os.path.isfile(xfile_path): | ||||
|         xfile_path = os.path.join(archive_root, '{:d}-FULL.pth'.format(idx)) | ||||
|       assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|       xdata = torch.load(xfile_path, map_location='cpu') | ||||
|       assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path) | ||||
|  | ||||
|       hp2archres = OrderedDict() | ||||
|       for hp_key, results in xdata.items(): | ||||
|         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||
|       self.arch2infos_dict[idx] = hp2archres | ||||
|  | ||||
|   def query_info_str_by_arch(self, arch, hp: Text='12'): | ||||
|     """ This function is used to query the information of a specific architecture | ||||
|         'arch' can be an architecture index or an architecture string | ||||
|         When hp=01, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/01E.config' | ||||
|         When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config' | ||||
|         When hp=90, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/90E.config' | ||||
|         The difference between these three configurations are the number of training epochs. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||
|     self._query_info_str_by_arch(arch, hp, print_information) | ||||
|  | ||||
|   def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True): | ||||
|     """This function will return the metric for the `index`-th architecture | ||||
|        `dataset` indicates the dataset: | ||||
|           'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set | ||||
|           'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set | ||||
|           'cifar100'       : using the proposed train set of CIFAR-100 as the training set | ||||
|           'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set | ||||
|         `iepoch` indicates the index of training epochs from 0 to 11/199. | ||||
|           When iepoch=None, it will return the metric for the last training epoch | ||||
|           When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) | ||||
|         `hp` indicates different hyper-parameters for training | ||||
|           When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs | ||||
|           When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs | ||||
|           When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs | ||||
|         `is_random` | ||||
|           When is_random=True, the performance of a random architecture will be returned | ||||
|           When is_random=False, the performanceo of all trials will be averaged. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) | ||||
|     archresult = self.arch2infos_dict[index][str(hp)] | ||||
|     # if randomly select one trial, select the seed at first | ||||
|     if isinstance(is_random, bool) and is_random: | ||||
|       seeds = archresult.get_dataset_seeds(dataset) | ||||
|       is_random = random.choice(seeds) | ||||
|     # collect the training information | ||||
|     train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random) | ||||
|     total = train_info['iepoch'] + 1 | ||||
|     xinfo = {'train-loss'    : train_info['loss'], | ||||
|              'train-accuracy': train_info['accuracy'], | ||||
|              'train-per-time': train_info['all_time'] / total, | ||||
|              'train-all-time': train_info['all_time']} | ||||
|     # collect the evaluation information | ||||
|     if dataset == 'cifar10-valid': | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       try: | ||||
|         test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       valtest_info = None | ||||
|     else: | ||||
|       try: # collect results on the proposed test set | ||||
|         if dataset == 'cifar10': | ||||
|           test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         test_info = None | ||||
|       try: # collect results on the proposed validation set | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|       try: | ||||
|         if dataset != 'cifar10': | ||||
|           valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) | ||||
|         else: | ||||
|           valtest_info = None | ||||
|       except: | ||||
|         valtest_info = None | ||||
|     if valid_info is not None: | ||||
|       xinfo['valid-loss'] = valid_info['loss'] | ||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] | ||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total | ||||
|       xinfo['valid-all-time'] = valid_info['all_time'] | ||||
|     if test_info is not None: | ||||
|       xinfo['test-loss'] = test_info['loss'] | ||||
|       xinfo['test-accuracy'] = test_info['accuracy'] | ||||
|       xinfo['test-per-time'] = test_info['all_time'] / total | ||||
|       xinfo['test-all-time'] = test_info['all_time'] | ||||
|     if valtest_info is not None: | ||||
|       xinfo['valtest-loss'] = valtest_info['loss'] | ||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] | ||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total | ||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] | ||||
|     return xinfo | ||||
|  | ||||
|   def show(self, index: int = -1) -> None: | ||||
|     """ | ||||
|     This function will print the information of a specific (or all) architecture(s). | ||||
|  | ||||
|     :param index: If the index < 0: it will loop for all architectures and print their information one by one. | ||||
|                   else: it will print the information of the 'index'-th architecture. | ||||
|     :return: nothing | ||||
|     """ | ||||
|     self._show(index, print_information) | ||||
							
								
								
									
										711
									
								
								lib/nas_201_api/api_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										711
									
								
								lib/nas_201_api/api_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,711 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # | ||||
| ############################################################################################ | ||||
| # In this Python file, we define NASBenchMetaAPI, the abstract class for benchmark APIs. | ||||
| # We also define the class ArchResults, which contains all information of a single architecture trained by one kind of hyper-parameters on three datasets. | ||||
| # We also define the class ResultsCount, which contains all information of a single trial for a single architecture. | ||||
| ############################################################################################ | ||||
| # History: | ||||
| # [2020.06.30] The first version. | ||||
| # | ||||
| import os, abc, copy, random, torch, numpy as np | ||||
| from pathlib import Path | ||||
| from typing import List, Text, Union, Dict, Optional | ||||
| from collections import OrderedDict, defaultdict | ||||
|  | ||||
|  | ||||
| def remap_dataset_set_names(dataset, metric_on_set, verbose=False): | ||||
|   """re-map the metric_on_set to internal keys""" | ||||
|   if verbose: | ||||
|     print('Call internal function _remap_dataset_set_names with dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set)) | ||||
|   if dataset == 'cifar10' and metric_on_set == 'valid': | ||||
|     dataset, metric_on_set = 'cifar10-valid', 'x-valid' | ||||
|   elif dataset == 'cifar10' and metric_on_set == 'test': | ||||
|     dataset, metric_on_set = 'cifar10', 'ori-test' | ||||
|   elif dataset == 'cifar10' and metric_on_set == 'train': | ||||
|     dataset, metric_on_set = 'cifar10', 'train' | ||||
|   elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'valid': | ||||
|     metric_on_set = 'x-valid' | ||||
|   elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'test': | ||||
|     metric_on_set = 'x-test' | ||||
|   if verbose: | ||||
|     print('  return dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set)) | ||||
|   return dataset, metric_on_set | ||||
|  | ||||
|  | ||||
| class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|  | ||||
|   @abc.abstractmethod | ||||
|   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): | ||||
|     """The initialization function that takes the dataset file path (or a dict loaded from that path) as input.""" | ||||
|  | ||||
|   def __getitem__(self, index: int): | ||||
|     return copy.deepcopy(self.meta_archs[index]) | ||||
|  | ||||
|   def arch(self, index: int): | ||||
|     """Return the topology structure of the `index`-th architecture.""" | ||||
|     if self.verbose: | ||||
|       print('Call the arch function with index={:}'.format(index)) | ||||
|     assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs)) | ||||
|     return copy.deepcopy(self.meta_archs[index]) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.meta_archs) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) | ||||
|  | ||||
|   def random(self): | ||||
|     """Return a random index of all architectures.""" | ||||
|     return random.randint(0, len(self.meta_archs)-1) | ||||
|  | ||||
|   def query_index_by_arch(self, arch): | ||||
|     """ This function is used to query the index of an architecture in the search space. | ||||
|         In the topology search space, the input arch can be an architecture string such as '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'; | ||||
|           or an instance that has the 'tostr' function that can generate the architecture string; | ||||
|           or it is directly an architecture index, in this case, we will check whether it is valid or not. | ||||
|         This function will return the index. | ||||
|         If return -1, it means this architecture is not in the search space. | ||||
|         Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space). | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_index_by_arch with arch={:}'.format(arch)) | ||||
|     if isinstance(arch, int): | ||||
|       if 0 <= arch < len(self): | ||||
|         return arch | ||||
|       else: | ||||
|         raise ValueError('Invalid architecture index {:} vs [{:}, {:}].'.format(arch, 0, len(self))) | ||||
|     elif isinstance(arch, str): | ||||
|       if arch in self.archstr2index: arch_index = self.archstr2index[ arch ] | ||||
|       else                         : arch_index = -1 | ||||
|     elif hasattr(arch, 'tostr'): | ||||
|       if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ] | ||||
|       else                                 : arch_index = -1 | ||||
|     else: arch_index = -1 | ||||
|     return arch_index | ||||
|  | ||||
|   @abc.abstractmethod | ||||
|   def reload(self, archive_root: Text = None, index: int = None): | ||||
|     """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'. | ||||
|        If index is None, overwrite all ckps. | ||||
|     """ | ||||
|  | ||||
|   def clear_params(self, index: int, hp: Optional[Text]=None): | ||||
|     """Remove the architecture's weights to save memory. | ||||
|     :arg | ||||
|       index: the index of the target architecture | ||||
|       hp: a flag to controll how to clear the parameters. | ||||
|         -- None: clear all the weights in '01'/'12'/'90', which indicates the number of training epochs. | ||||
|         -- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp]. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call clear_params with index={:} and hp={:}'.format(index, hp)) | ||||
|     if hp is None: | ||||
|       for key, result in self.arch2infos_dict[index].items(): | ||||
|         result.clear_params() | ||||
|     else: | ||||
|       if str(hp) not in self.arch2infos_dict[index]: | ||||
|         raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[index].keys()), hp)) | ||||
|       self.arch2infos_dict[index][str(hp)].clear_params() | ||||
|  | ||||
|   @abc.abstractmethod | ||||
|   def query_info_str_by_arch(self, arch, hp: Text='12'): | ||||
|     """This function is used to query the information of a specific architecture.""" | ||||
|  | ||||
|   def _query_info_str_by_arch(self, arch, hp: Text='12', print_information=None): | ||||
|     arch_index = self.query_index_by_arch(arch) | ||||
|     if arch_index in self.arch2infos_dict: | ||||
|       if hp not in self.arch2infos_dict[arch_index]: | ||||
|         raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[arch_index].keys()), hp)) | ||||
|       info = self.arch2infos_dict[arch_index][hp] | ||||
|       strings = print_information(info, 'arch-index={:}'.format(arch_index)) | ||||
|       return '\n'.join(strings) | ||||
|     else: | ||||
|       print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index)) | ||||
|       return None | ||||
|  | ||||
|   def query_meta_info_by_index(self, arch_index, hp: Text = '12'): | ||||
|     """Return the ArchResults for the 'arch_index'-th architecture. This function is similar to query_by_index.""" | ||||
|     if self.verbose: | ||||
|       print('Call query_meta_info_by_index with arch_index={:}, hp={:}'.format(arch_index, hp)) | ||||
|     if arch_index in self.arch2infos_dict: | ||||
|       if hp not in self.arch2infos_dict[arch_index]: | ||||
|         raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(arch_index, list(self.arch2infos_dict[arch_index].keys()), hp)) | ||||
|       info = self.arch2infos_dict[arch_index][hp] | ||||
|     else: | ||||
|       raise ValueError('arch_index [{:}] does not in arch2infos'.format(arch_index)) | ||||
|     return copy.deepcopy(info) | ||||
|  | ||||
|   def query_by_index(self, arch_index: int, dataname: Union[None, Text] = None, hp: Text = '12'): | ||||
|     """ This 'query_by_index' function is used to query information with the training of 01 epochs, 12 epochs, 90 epochs, or 200 epochs. | ||||
|         ------ | ||||
|         If hp=01, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/01E.config) | ||||
|         If hp=12, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/12E.config) | ||||
|         If hp=90, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/90E.config) | ||||
|         If hp=200, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/200E.config) | ||||
|         ------ | ||||
|         If dataname is None, return the ArchResults | ||||
|           else, return a dict with all trials on that dataset (the key is the seed) | ||||
|         Options are 'cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'. | ||||
|         -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|         -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|         -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp)) | ||||
|     info = self.query_meta_info_by_index(arch_index, hp) | ||||
|     if dataname is None: return info | ||||
|     else: | ||||
|       if dataname not in info.get_dataset_names(): | ||||
|         raise ValueError('invalid dataset-name : {:} vs. {:}'.format(dataname, info.get_dataset_names())) | ||||
|       return info.query(dataname) | ||||
|  | ||||
|   def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'): | ||||
|     """Find the architecture with the highest accuracy based on some constraints.""" | ||||
|     if self.verbose: | ||||
|       print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max)) | ||||
|     dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose) | ||||
|     best_index, highest_accuracy = -1, None | ||||
|     for i, arch_index in enumerate(self.evaluated_indexes): | ||||
|       arch_info = self.arch2infos_dict[arch_index][hp] | ||||
|       info = arch_info.get_compute_costs(dataset)  # the information of costs | ||||
|       flop, param, latency = info['flops'], info['params'], info['latency'] | ||||
|       if FLOP_max  is not None and flop  > FLOP_max : continue | ||||
|       if Param_max is not None and param > Param_max: continue | ||||
|       xinfo = arch_info.get_metrics(dataset, metric_on_set)  # the information of loss and accuracy | ||||
|       loss, accuracy = xinfo['loss'], xinfo['accuracy'] | ||||
|       if best_index == -1: | ||||
|         best_index, highest_accuracy = arch_index, accuracy | ||||
|       elif highest_accuracy < accuracy: | ||||
|         best_index, highest_accuracy = arch_index, accuracy | ||||
|     if self.verbose: | ||||
|       print('  the best architecture : [{:}] {:} with accuracy={:.3f}%'.format(best_index, self.arch(best_index), highest_accuracy)) | ||||
|     return best_index, highest_accuracy | ||||
|  | ||||
|   def get_net_param(self, index, dataset, seed: Optional[int], hp: Text = '12'): | ||||
|     """ | ||||
|       This function is used to obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed` | ||||
|       Args [seed]: | ||||
|         -- None : return a dict containing the trained weights of all trials, where each key is a seed and its corresponding value is the weights. | ||||
|         -- a interger : return the weights of a specific trial, whose seed is this interger. | ||||
|       Args [hp]: | ||||
|         -- 01 : train the model by 01 epochs | ||||
|         -- 12 : train the model by 12 epochs | ||||
|         -- 90 : train the model by 90 epochs | ||||
|         -- 200 : train the model by 200 epochs | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp)) | ||||
|     info = self.query_meta_info_by_index(index, hp) | ||||
|     return info.get_net_param(dataset, seed) | ||||
|  | ||||
|   def get_net_config(self, index: int, dataset: Text): | ||||
|     """ | ||||
|       This function is used to obtain the configuration for the `index`-th architecture on `dataset`. | ||||
|       Args [dataset] (4 possible options): | ||||
|         -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|         -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|         -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|       This function will return a dict. | ||||
|       ========= Some examlpes for using this function: | ||||
|       config = api.get_net_config(128, 'cifar10') | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset)) | ||||
|     if index in self.arch2infos_dict: | ||||
|       info = self.arch2infos_dict[index] | ||||
|     else: | ||||
|       raise ValueError('The arch_index={:} is not in arch2infos_dict.'.format(arch_index)) | ||||
|     info = next(iter(info.values())) | ||||
|     results = info.query(dataset, None) | ||||
|     results = next(iter(results.values())) | ||||
|     return results.get_config(None) | ||||
|    | ||||
|   def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]: | ||||
|     """To obtain the cost metric for the `index`-th architecture on a dataset.""" | ||||
|     if self.verbose: | ||||
|       print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) | ||||
|     info = self.query_meta_info_by_index(index, hp) | ||||
|     return info.get_compute_costs(dataset) | ||||
|  | ||||
|   def get_latency(self, index: int, dataset: Text, hp: Text = '12') -> float: | ||||
|     """ | ||||
|     To obtain the latency of the network (by default it will return the latency with the batch size of 256). | ||||
|     :param index: the index of the target architecture | ||||
|     :param dataset: the dataset name (cifar10-valid, cifar10, cifar100, ImageNet16-120) | ||||
|     :return: return a float value in seconds | ||||
|     """ | ||||
|     if self.verbose: | ||||
|       print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) | ||||
|     cost_dict = self.get_cost_info(index, dataset, hp) | ||||
|     return cost_dict['latency'] | ||||
|  | ||||
|   @abc.abstractmethod | ||||
|   def show(self, index=-1): | ||||
|     """This function will print the information of a specific (or all) architecture(s).""" | ||||
|  | ||||
|   def _show(self, index=-1, print_information=None) -> None: | ||||
|     """ | ||||
|     This function will print the information of a specific (or all) architecture(s). | ||||
|  | ||||
|     :param index: If the index < 0: it will loop for all architectures and print their information one by one. | ||||
|                   else: it will print the information of the 'index'-th architecture. | ||||
|     :return: nothing | ||||
|     """ | ||||
|     if index < 0: # show all architectures | ||||
|       print(self) | ||||
|       for i, idx in enumerate(self.evaluated_indexes): | ||||
|         print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10) | ||||
|         print('arch : {:}'.format(self.meta_archs[idx])) | ||||
|         for key, result in self.arch2infos_dict[index].items(): | ||||
|           strings = print_information(result) | ||||
|           print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40) | ||||
|           print('\n'.join(strings)) | ||||
|         print('<' * 40 + '------------' + '<' * 40) | ||||
|     else: | ||||
|       if 0 <= index < len(self.meta_archs): | ||||
|         if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index)) | ||||
|         else: | ||||
|           arch_info = self.arch2infos_dict[index] | ||||
|           for key, result in self.arch2infos_dict[index].items(): | ||||
|             strings = print_information(result) | ||||
|             print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40) | ||||
|             print('\n'.join(strings)) | ||||
|           print('<' * 40 + '------------' + '<' * 40) | ||||
|       else: | ||||
|         print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs))) | ||||
|  | ||||
|   def statistics(self, dataset: Text, hp: Union[Text, int]) -> Dict[int, int]: | ||||
|     """This function will count the number of total trials.""" | ||||
|     if self.verbose: | ||||
|       print('Call the statistics function with dataset={:} and hp={:}.'.format(dataset, hp)) | ||||
|     valid_datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|     if dataset not in valid_datasets: | ||||
|       raise ValueError('{:} not in {:}'.format(dataset, valid_datasets)) | ||||
|     nums, hp = defaultdict(lambda: 0), str(hp) | ||||
|     for index in range(len(self)): | ||||
|       archInfo = self.arch2infos_dict[index][hp] | ||||
|       dataset_seed = archInfo.dataset_seed | ||||
|       if dataset not in dataset_seed: | ||||
|         nums[0] += 1 | ||||
|       else: | ||||
|         nums[len(dataset_seed[dataset])] += 1 | ||||
|     return dict(nums) | ||||
|  | ||||
|  | ||||
| class ArchResults(object): | ||||
|  | ||||
|   def __init__(self, arch_index, arch_str): | ||||
|     self.arch_index   = int(arch_index) | ||||
|     self.arch_str     = copy.deepcopy(arch_str) | ||||
|     self.all_results  = dict() | ||||
|     self.dataset_seed = dict() | ||||
|     self.clear_net_done = False | ||||
|  | ||||
|   def get_compute_costs(self, dataset): | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|  | ||||
|     flops     = [result.flop for result in results] | ||||
|     params    = [result.params for result in results] | ||||
|     latencies = [result.get_latency() for result in results] | ||||
|     latencies = [x for x in latencies if x > 0] | ||||
|     mean_latency = np.mean(latencies) if len(latencies) > 0 else None | ||||
|     time_infos = defaultdict(list) | ||||
|     for result in results: | ||||
|       time_info = result.get_times() | ||||
|       for key, value in time_info.items(): time_infos[key].append( value ) | ||||
|       | ||||
|     info = {'flops'  : np.mean(flops), | ||||
|             'params' : np.mean(params), | ||||
|             'latency': mean_latency} | ||||
|     for key, value in time_infos.items(): | ||||
|       if len(value) > 0 and value[0] is not None: | ||||
|         info[key] = np.mean(value) | ||||
|       else: info[key] = None | ||||
|     return info | ||||
|  | ||||
|   def get_metrics(self, dataset, setname, iepoch=None, is_random=False): | ||||
|     """ | ||||
|       This `get_metrics` function is used to obtain obtain the loss, accuracy, etc information on a specific dataset. | ||||
|       If not specify, each set refer to the proposed split in NAS-Bench-201 paper. | ||||
|       If some args return None or raise error, then it is not avaliable. | ||||
|       ======================================== | ||||
|       Args [dataset] (4 possible options): | ||||
|         -- cifar10-valid : training the model on the CIFAR-10 training set. | ||||
|         -- cifar10 : training the model on the CIFAR-10 training + validation set. | ||||
|         -- cifar100 : training the model on the CIFAR-100 training set. | ||||
|         -- ImageNet16-120 : training the model on the ImageNet16-120 training set. | ||||
|       Args [setname] (each dataset has different setnames): | ||||
|         -- When dataset = cifar10-valid, you can use 'train', 'x-valid', 'ori-test' | ||||
|         ------ 'train' : the metric on the training set. | ||||
|         ------ 'x-valid' : the metric on the validation set. | ||||
|         ------ 'ori-test' : the metric on the test set. | ||||
|         -- When dataset = cifar10, you can use 'train', 'ori-test'. | ||||
|         ------ 'train' : the metric on the training + validation set. | ||||
|         ------ 'ori-test' : the metric on the test set. | ||||
|         -- When dataset = cifar100 or ImageNet16-120, you can use 'train', 'ori-test', 'x-valid', 'x-test' | ||||
|         ------ 'train' : the metric on the training set. | ||||
|         ------ 'x-valid' : the metric on the validation set. | ||||
|         ------ 'x-test' : the metric on the test set. | ||||
|         ------ 'ori-test' : the metric on the validation + test set. | ||||
|       Args [iepoch] (None or an integer in [0, the-number-of-total-training-epochs) | ||||
|         ------ None : return the metric after the last training epoch. | ||||
|         ------ an integer i : return the metric after the i-th training epoch. | ||||
|       Args [is_random]: | ||||
|         ------ True : return the metric of a randomly selected trial. | ||||
|         ------ False : return the averaged metric of all avaliable trials. | ||||
|         ------ an integer indicating the 'seed' value : return the metric of a specific trial (whose random seed is 'is_random'). | ||||
|     """ | ||||
|     x_seeds = self.dataset_seed[dataset] | ||||
|     results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] | ||||
|     infos   = defaultdict(list) | ||||
|     for result in results: | ||||
|       if setname == 'train': | ||||
|         info = result.get_train(iepoch) | ||||
|       else: | ||||
|         info = result.get_eval(setname, iepoch) | ||||
|       for key, value in info.items(): infos[key].append( value ) | ||||
|     return_info = dict() | ||||
|     if isinstance(is_random, bool) and is_random: # randomly select one | ||||
|       index = random.randint(0, len(results)-1) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     elif isinstance(is_random, bool) and not is_random: # average | ||||
|       for key, value in infos.items(): | ||||
|         if len(value) > 0 and value[0] is not None: | ||||
|           return_info[key] = np.mean(value) | ||||
|         else: return_info[key] = None | ||||
|     elif isinstance(is_random, int): # specify the seed | ||||
|       if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds)) | ||||
|       index = x_seeds.index(is_random) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     else: | ||||
|       raise ValueError('invalid value for is_random: {:}'.format(is_random)) | ||||
|     return return_info | ||||
|  | ||||
|   def show(self, is_print=False): | ||||
|     return print_information(self, None, is_print) | ||||
|  | ||||
|   def get_dataset_names(self): | ||||
|     return list(self.dataset_seed.keys()) | ||||
|  | ||||
|   def get_dataset_seeds(self, dataset): | ||||
|     return copy.deepcopy( self.dataset_seed[dataset] ) | ||||
|  | ||||
|   def get_net_param(self, dataset: Text, seed: Union[None, int] =None): | ||||
|     """ | ||||
|     This function will return the trained network's weights on the 'dataset'. | ||||
|     :arg | ||||
|       dataset: one of 'cifar10-valid', 'cifar10', 'cifar100', and 'ImageNet16-120'. | ||||
|       seed: an integer indicates the seed value or None that indicates returing all trials. | ||||
|     """ | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds} | ||||
|     else: | ||||
|       return self.all_results[(dataset, seed)].get_net_param() | ||||
|  | ||||
|   def reset_latency(self, dataset: Text, seed: Union[None, Text], latency: float) -> None: | ||||
|     """This function is used to reset the latency in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].update_latency([latency]) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].update_latency([latency]) | ||||
|  | ||||
|   def reset_pseudo_train_times(self, dataset: Text, seed: Union[None, Text], estimated_per_epoch_time: float) -> None: | ||||
|     """This function is used to reset the train-times in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) | ||||
|  | ||||
|   def reset_pseudo_eval_times(self, dataset: Text, seed: Union[None, Text], eval_name: Text, estimated_per_epoch_time: float) -> None: | ||||
|     """This function is used to reset the eval-times in all corresponding ResultsCount(s).""" | ||||
|     if seed is None: | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) | ||||
|     else: | ||||
|       self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) | ||||
|  | ||||
|   def get_latency(self, dataset: Text) -> float: | ||||
|     """Get the latency of a model on the target dataset. [Timestamp: 2020.03.09]""" | ||||
|     latencies = [] | ||||
|     for seed in self.dataset_seed[dataset]: | ||||
|       latency = self.all_results[(dataset, seed)].get_latency() | ||||
|       if not isinstance(latency, float) or latency <= 0: | ||||
|         raise ValueError('invalid latency of {:} with seed={:} : {:}'.format(dataset, seed, latency)) | ||||
|       latencies.append(latency) | ||||
|     return sum(latencies) / len(latencies) | ||||
|  | ||||
|   def get_total_epoch(self, dataset=None): | ||||
|     """Return the total number of training epochs.""" | ||||
|     if dataset is None: | ||||
|       epochss = [] | ||||
|       for xdata, x_seeds in self.dataset_seed.items(): | ||||
|         epochss += [self.all_results[(xdata, seed)].get_total_epoch() for seed in x_seeds] | ||||
|     elif isinstance(dataset, str): | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       epochss = [self.all_results[(dataset, seed)].get_total_epoch() for seed in x_seeds] | ||||
|     else: | ||||
|       raise ValueError('invalid dataset={:}'.format(dataset)) | ||||
|     if len(set(epochss)) > 1: raise ValueError('Each trial mush have the same number of training epochs : {:}'.format(epochss)) | ||||
|     return epochss[-1] | ||||
|  | ||||
|   def query(self, dataset, seed=None): | ||||
|     """Return the ResultsCount object (containing all information of a single trial) for 'dataset' and 'seed'""" | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       return {seed: self.all_results[(dataset, seed)] for seed in x_seeds} | ||||
|     else: | ||||
|       return self.all_results[(dataset, seed)] | ||||
|  | ||||
|   def arch_idx_str(self): | ||||
|     return '{:06d}'.format(self.arch_index) | ||||
|  | ||||
|   def update(self, dataset_name, seed, result): | ||||
|     if dataset_name not in self.dataset_seed: | ||||
|       self.dataset_seed[dataset_name] = [] | ||||
|     assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name) | ||||
|     self.dataset_seed[ dataset_name ].append( seed ) | ||||
|     self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] ) | ||||
|     assert (dataset_name, seed) not in self.all_results | ||||
|     self.all_results[ (dataset_name, seed) ] = result | ||||
|     self.clear_net_done = False | ||||
|  | ||||
|   def state_dict(self): | ||||
|     state_dict = dict() | ||||
|     for key, value in self.__dict__.items(): | ||||
|       if key == 'all_results': # contain the class of ResultsCount | ||||
|         xvalue = dict() | ||||
|         assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) | ||||
|         for _k, _v in value.items(): | ||||
|           assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v)) | ||||
|           xvalue[_k] = _v.state_dict() | ||||
|       else: | ||||
|         xvalue = value | ||||
|       state_dict[key] = xvalue | ||||
|     return state_dict | ||||
|  | ||||
|   def load_state_dict(self, state_dict): | ||||
|     new_state_dict = dict() | ||||
|     for key, value in state_dict.items(): | ||||
|       if key == 'all_results': # to convert to the class of ResultsCount | ||||
|         xvalue = dict() | ||||
|         assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) | ||||
|         for _k, _v in value.items(): | ||||
|           xvalue[_k] = ResultsCount.create_from_state_dict(_v) | ||||
|       else: xvalue = value | ||||
|       new_state_dict[key] = xvalue | ||||
|     self.__dict__.update(new_state_dict) | ||||
|  | ||||
|   @staticmethod | ||||
|   def create_from_state_dict(state_dict_or_file): | ||||
|     x = ArchResults(-1, -1) | ||||
|     if isinstance(state_dict_or_file, str): # a file path | ||||
|       state_dict = torch.load(state_dict_or_file, map_location='cpu') | ||||
|     elif isinstance(state_dict_or_file, dict): | ||||
|       state_dict = state_dict_or_file | ||||
|     else: | ||||
|       raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file))) | ||||
|     x.load_state_dict(state_dict) | ||||
|     return x | ||||
|  | ||||
|   # This function is used to clear the weights saved in each 'result' | ||||
|   # This can help reduce the memory footprint. | ||||
|   def clear_params(self): | ||||
|     for key, result in self.all_results.items(): | ||||
|       del result.net_state_dict | ||||
|       result.net_state_dict = None | ||||
|     self.clear_net_done = True | ||||
|  | ||||
|   def debug_test(self): | ||||
|     """This function is used for me to debug and test, which will call most methods.""" | ||||
|     all_dataset = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|     for dataset in all_dataset: | ||||
|       print('---->>>> {:}'.format(dataset)) | ||||
|       print('The latency on {:} is {:} s'.format(dataset, self.get_latency(dataset))) | ||||
|       for seed in self.dataset_seed[dataset]: | ||||
|         result = self.all_results[(dataset, seed)] | ||||
|         print('  ==>> result = {:}'.format(result)) | ||||
|         print('  ==>> cost = {:}'.format(result.get_times())) | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done)) | ||||
|  | ||||
|  | ||||
| """ | ||||
| This class (ResultsCount) is used to save the information of one trial for a single architecture. | ||||
| I did not write much comment for this class, because it is the lowest-level class in NAS-Bench-201 API, which will be rarely called. | ||||
| If you have any question regarding this class, please open an issue or email me. | ||||
| """ | ||||
| class ResultsCount(object): | ||||
|  | ||||
|   def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency): | ||||
|     self.name           = name | ||||
|     self.net_state_dict = state_dict | ||||
|     self.train_acc1es = copy.deepcopy(train_accs) | ||||
|     self.train_acc5es = None | ||||
|     self.train_losses = copy.deepcopy(train_losses) | ||||
|     self.train_times  = None | ||||
|     self.arch_config  = copy.deepcopy(arch_config) | ||||
|     self.params     = params | ||||
|     self.flop       = flop | ||||
|     self.seed       = seed | ||||
|     self.epochs     = epochs | ||||
|     self.latency    = latency | ||||
|     # evaluation results | ||||
|     self.reset_eval() | ||||
|  | ||||
|   def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times) -> None: | ||||
|     self.train_acc1es = train_acc1es | ||||
|     self.train_acc5es = train_acc5es | ||||
|     self.train_losses = train_losses | ||||
|     self.train_times  = train_times | ||||
|  | ||||
|   def reset_pseudo_train_times(self, estimated_per_epoch_time: float) -> None: | ||||
|     """Assign the training times.""" | ||||
|     train_times = OrderedDict() | ||||
|     for i in range(self.epochs): | ||||
|       train_times[i] = estimated_per_epoch_time | ||||
|     self.train_times = train_times | ||||
|  | ||||
|   def reset_pseudo_eval_times(self, eval_name: Text, estimated_per_epoch_time: float) -> None: | ||||
|     """Assign the evaluation times.""" | ||||
|     if eval_name not in self.eval_names: raise ValueError('invalid eval name : {:}'.format(eval_name)) | ||||
|     for i in range(self.epochs): | ||||
|       self.eval_times['{:}@{:}'.format(eval_name,i)] = estimated_per_epoch_time | ||||
|  | ||||
|   def reset_eval(self): | ||||
|     self.eval_names  = [] | ||||
|     self.eval_acc1es = {} | ||||
|     self.eval_times  = {} | ||||
|     self.eval_losses = {} | ||||
|  | ||||
|   def update_latency(self, latency): | ||||
|     self.latency = copy.deepcopy( latency ) | ||||
|  | ||||
|   def get_latency(self) -> float: | ||||
|     """Return the latency value in seconds. -1 represents not avaliable ; otherwise it should be a float value""" | ||||
|     if self.latency is None: return -1.0 | ||||
|     else: return sum(self.latency) / len(self.latency) | ||||
|  | ||||
|   def update_eval(self, accs, losses, times):  # new version | ||||
|     data_names = set([x.split('@')[0] for x in accs.keys()]) | ||||
|     for data_name in data_names: | ||||
|       assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name) | ||||
|       self.eval_names.append( data_name ) | ||||
|       for iepoch in range(self.epochs): | ||||
|         xkey = '{:}@{:}'.format(data_name, iepoch) | ||||
|         self.eval_acc1es[ xkey ] = accs[ xkey ] | ||||
|         self.eval_losses[ xkey ] = losses[ xkey ] | ||||
|         self.eval_times [ xkey ] = times[ xkey ] | ||||
|  | ||||
|   def update_OLD_eval(self, name, accs, losses): # old version | ||||
|     assert name not in self.eval_names, '{:} has already added'.format(name) | ||||
|     self.eval_names.append( name ) | ||||
|     for iepoch in range(self.epochs): | ||||
|       if iepoch in accs: | ||||
|         self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch] | ||||
|         self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch] | ||||
|  | ||||
|   def __repr__(self): | ||||
|     num_eval = len(self.eval_names) | ||||
|     set_name = '[' + ', '.join(self.eval_names) + ']' | ||||
|     return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name)) | ||||
|  | ||||
|   def get_total_epoch(self): | ||||
|     return copy.deepcopy(self.epochs) | ||||
|  | ||||
|   def get_times(self): | ||||
|     """Obtain the information regarding both training and evaluation time.""" | ||||
|     if self.train_times is not None and isinstance(self.train_times, dict): | ||||
|       train_times = list( self.train_times.values() ) | ||||
|       time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)} | ||||
|     else: | ||||
|       time_info = {'T-train@epoch':                 None, 'T-train@total':               None } | ||||
|     for name in self.eval_names: | ||||
|       try: | ||||
|         xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)] | ||||
|         time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes) | ||||
|         time_info['T-{:}@total'.format(name)] = np.sum(xtimes) | ||||
|       except: | ||||
|         time_info['T-{:}@epoch'.format(name)] = None | ||||
|         time_info['T-{:}@total'.format(name)] = None | ||||
|     return time_info | ||||
|  | ||||
|   def get_eval_set(self): | ||||
|     return self.eval_names | ||||
|  | ||||
|   # get the training information | ||||
|   def get_train(self, iepoch=None): | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     if self.train_times is not None: | ||||
|       xtime = self.train_times[iepoch] | ||||
|       atime = sum([self.train_times[i] for i in range(iepoch+1)]) | ||||
|     else: xtime, atime = None, None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.train_losses[iepoch], | ||||
|             'accuracy': self.train_acc1es[iepoch], | ||||
|             'cur_time': xtime, | ||||
|             'all_time': atime} | ||||
|  | ||||
|   def get_eval(self, name, iepoch=None): | ||||
|     """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument).""" | ||||
|     if iepoch is None: iepoch = self.epochs-1 | ||||
|     assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) | ||||
|     if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: | ||||
|       xtime = self.eval_times['{:}@{:}'.format(name,iepoch)] | ||||
|       atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)]) | ||||
|     else: xtime, atime = None, None | ||||
|     return {'iepoch'  : iepoch, | ||||
|             'loss'    : self.eval_losses['{:}@{:}'.format(name,iepoch)], | ||||
|             'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)], | ||||
|             'cur_time': xtime, | ||||
|             'all_time': atime} | ||||
|  | ||||
|   def get_net_param(self, clone=False): | ||||
|     if clone: return copy.deepcopy(self.net_state_dict) | ||||
|     else: return self.net_state_dict | ||||
|  | ||||
|   def get_config(self, str2structure): | ||||
|     """This function is used to obtain the config dict for this architecture.""" | ||||
|     if str2structure is None: | ||||
|       # In this case, this is NAS-Bench-301 | ||||
|       if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny': | ||||
|         return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'], | ||||
|                 'genotype': self.arch_config['genotype'], 'num_classes': self.arch_config['class_num']} | ||||
|       # In this case, this is NAS-Bench-201 | ||||
|       else: | ||||
|         return {'name': 'infer.tiny', 'C': self.arch_config['channel'], | ||||
|                 'N'   : self.arch_config['num_cells'], | ||||
|                 'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']} | ||||
|     else: | ||||
|       # In this case, this is NAS-Bench-301 | ||||
|       if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny': | ||||
|         return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'], | ||||
|                 'genotype': str2structure(self.arch_config['genotype']), 'num_classes': self.arch_config['class_num']} | ||||
|       # In this case, this is NAS-Bench-201 | ||||
|       else: | ||||
|         return {'name': 'infer.tiny', 'C': self.arch_config['channel'], | ||||
|                 'N'   : self.arch_config['num_cells'], | ||||
|                 'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']} | ||||
|  | ||||
|   def state_dict(self): | ||||
|     _state_dict = {key: value for key, value in self.__dict__.items()} | ||||
|     return _state_dict | ||||
|  | ||||
|   def load_state_dict(self, state_dict): | ||||
|     self.__dict__.update(state_dict) | ||||
|  | ||||
|   @staticmethod | ||||
|   def create_from_state_dict(state_dict): | ||||
|     x = ResultsCount(None, None, None, None, None, None, None, None, None, None) | ||||
|     x.load_state_dict(state_dict) | ||||
|     return x | ||||
		Reference in New Issue
	
	Block a user