Update weight watcher codes
This commit is contained in:
parent
9659f132be
commit
6facc39a42
@ -46,7 +46,8 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default).
|
||||
```
|
||||
from nas_201_api import NASBench201API as API
|
||||
api = API('$path_to_meta_nas_bench_file')
|
||||
api = API('NAS-Bench-201-v1_1-096897.pth')
|
||||
# Create an API without the verbose log
|
||||
api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False)
|
||||
# The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')
|
||||
api = API(None)
|
||||
```
|
||||
|
@ -90,9 +90,9 @@ def visualize_sss_info(api, dataset, vis_save_dir):
|
||||
print ('Do not find cache file : {:}'.format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
info = api.get_cost_info(index, dataset)
|
||||
params.append(info['params'])
|
||||
flops.append(info['flops'])
|
||||
cost_info = api.get_cost_info(index, dataset, hp='90')
|
||||
params.append(cost_info['params'])
|
||||
flops.append(cost_info['flops'])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp='90', is_random=False)
|
||||
train_accs.append(info['train-accuracy'])
|
||||
@ -178,9 +178,9 @@ def visualize_tss_info(api, dataset, vis_save_dir):
|
||||
print ('Do not find cache file : {:}'.format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
info = api.get_cost_info(index, dataset)
|
||||
params.append(info['params'])
|
||||
flops.append(info['flops'])
|
||||
cost_info = api.get_cost_info(index, dataset, hp='12')
|
||||
params.append(cost_info['params'])
|
||||
flops.append(cost_info['flops'])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp='200', is_random=False)
|
||||
train_accs.append(info['train-accuracy'])
|
||||
@ -190,6 +190,7 @@ def visualize_tss_info(api, dataset, vis_save_dir):
|
||||
valid_accs.append(info['valid-accuracy'])
|
||||
else:
|
||||
valid_accs.append(info['valid-accuracy'])
|
||||
print('')
|
||||
info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
|
||||
torch.save(info, cache_file_path)
|
||||
else:
|
||||
|
@ -1,113 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
###############################################################################################
|
||||
# Before run these commands, the files must be properly put.
|
||||
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
|
||||
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1
|
||||
# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1
|
||||
###############################################################################################
|
||||
import os, gc, sys, math, argparse, psutil
|
||||
import numpy as np
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from nas_201_api import NASBench201API as API
|
||||
from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net
|
||||
from utils import weight_watcher
|
||||
|
||||
|
||||
def get_cor(A, B):
|
||||
return float(np.corrcoef(A, B)[0,1])
|
||||
|
||||
|
||||
def tostr(accdict, norms):
|
||||
xstr = []
|
||||
for key, accs in accdict.items():
|
||||
cor = get_cor(accs, norms)
|
||||
xstr.append('{:}: {:.3f}'.format(key, cor))
|
||||
return ' '.join(xstr)
|
||||
|
||||
|
||||
def evaluate(api, weight_dir, data: str, use_12epochs_result: bool):
|
||||
print('\nEvaluate dataset={:}'.format(data))
|
||||
norms, process = [], psutil.Process(os.getpid())
|
||||
final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
||||
final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
||||
for idx in range(len(api)):
|
||||
# info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
|
||||
for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']:
|
||||
info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False)
|
||||
if key == 'cifar10-valid':
|
||||
final_val_accs['cifar10'].append(info['valid-accuracy'])
|
||||
elif key == 'cifar10':
|
||||
final_test_accs['cifar10'].append(info['test-accuracy'])
|
||||
else:
|
||||
final_test_accs[key].append(info['test-accuracy'])
|
||||
final_val_accs[key].append(info['valid-accuracy'])
|
||||
config = api.get_net_config(idx, data)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
api.reload(weight_dir, idx)
|
||||
params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result)
|
||||
cur_norms = []
|
||||
for seed, param in params.items():
|
||||
with torch.no_grad():
|
||||
net.load_state_dict(param)
|
||||
_, summary = weight_watcher.analyze(net, alphas=False)
|
||||
cur_norms.append(-summary['lognorm'])
|
||||
cur_norm = float(np.mean(cur_norms))
|
||||
if math.isnan(cur_norm):
|
||||
print (' IGNORE {:} due to nan.'.format(idx))
|
||||
continue
|
||||
norms.append(cur_norm)
|
||||
api.clear_params(idx, None)
|
||||
if idx % 200 == 199 or idx + 1 == len(api):
|
||||
head = '{:05d}/{:05d}'.format(idx, len(api))
|
||||
stem_val = tostr(final_val_accs, norms)
|
||||
stem_test = tostr(final_test_accs, norms)
|
||||
print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6))
|
||||
print(' [Valid] -->> {:}'.format(stem_val))
|
||||
print(' [Test.] -->> {:}'.format(stem_test))
|
||||
gc.collect()
|
||||
|
||||
|
||||
def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result):
|
||||
api = API(meta_file)
|
||||
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
|
||||
print(time_string() + ' ' + '='*50)
|
||||
for data in datasets:
|
||||
nums = api.statistics(data, True)
|
||||
total = sum([k*v for k, v in nums.items()])
|
||||
print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
||||
print(time_string() + ' ' + '='*50)
|
||||
for data in datasets:
|
||||
nums = api.statistics(data, False)
|
||||
total = sum([k*v for k, v in nums.items()])
|
||||
print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
||||
print(time_string() + ' ' + '='*50)
|
||||
|
||||
#evaluate(api, weight_dir, 'cifar10-valid', False, True)
|
||||
evaluate(api, weight_dir, xdata, use_12epochs_result)
|
||||
|
||||
print('{:} finish this test.'.format(time_string()))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
|
||||
parser.add_argument('--dataset' , type=str, default=None, help='.')
|
||||
parser.add_argument('--use_12' , type=int, default=None, help='.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
meta_file = Path(args.base_path + '.pth')
|
||||
weight_dir = Path(args.base_path + '-archive')
|
||||
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
|
||||
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
|
||||
|
||||
main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12))
|
||||
|
@ -1,20 +0,0 @@
|
||||
#
|
||||
# exps/experimental/test-api.py
|
||||
#
|
||||
import sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
import torchvision.models as models
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from nas_201_api import NASBench201API as API
|
||||
|
||||
|
||||
def main():
|
||||
api = API(None)
|
||||
info = api.get_more_info(100, 'cifar100', 199, False, True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
151
exps/experimental/test-ww-bench.py
Normal file
151
exps/experimental/test-ww-bench.py
Normal file
@ -0,0 +1,151 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
###########################################################################################################################################################
|
||||
# Before run these commands, the files must be properly put.
|
||||
#
|
||||
# python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
|
||||
# python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar10
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar100
|
||||
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset ImageNet16-120
|
||||
###########################################################################################################################################################
|
||||
import os, gc, sys, math, argparse, psutil
|
||||
import numpy as np
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
matplotlib.use('agg')
|
||||
import matplotlib.pyplot as plt
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from nas_201_api import NASBench201API, NASBench301API
|
||||
from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net
|
||||
from utils import weight_watcher
|
||||
|
||||
|
||||
"""
|
||||
def get_cor(A, B):
|
||||
return float(np.corrcoef(A, B)[0,1])
|
||||
|
||||
|
||||
def tostr(accdict, norms):
|
||||
xstr = []
|
||||
for key, accs in accdict.items():
|
||||
cor = get_cor(accs, norms)
|
||||
xstr.append('{:}: {:.3f}'.format(key, cor))
|
||||
return ' '.join(xstr)
|
||||
"""
|
||||
|
||||
def evaluate(api, weight_dir, data: str):
|
||||
print('\nEvaluate dataset={:}'.format(data))
|
||||
process = psutil.Process(os.getpid())
|
||||
norms, accuracies = [], []
|
||||
ok, total = 0, 5000
|
||||
for idx in range(total):
|
||||
arch_index = api.random()
|
||||
api.reload(weight_dir, arch_index)
|
||||
# compute the weight watcher results
|
||||
config = api.get_net_config(arch_index, data)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
meta_info = api.query_meta_info_by_index(arch_index, hp='200' if isinstance(api, NASBench201API) else '90')
|
||||
params = meta_info.get_net_param(data, 777)
|
||||
with torch.no_grad():
|
||||
net.load_state_dict(params)
|
||||
_, summary = weight_watcher.analyze(net, alphas=False)
|
||||
if 'lognorm' not in summary:
|
||||
api.clear_params(arch_index, None)
|
||||
del net ; continue
|
||||
continue
|
||||
cur_norm = -summary['lognorm']
|
||||
api.clear_params(arch_index, None)
|
||||
if math.isnan(cur_norm):
|
||||
del net, meta_info
|
||||
continue
|
||||
else:
|
||||
ok += 1
|
||||
norms.append(cur_norm)
|
||||
# query the accuracy
|
||||
info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=777)
|
||||
accuracies.append(info['accuracy'])
|
||||
del net, meta_info
|
||||
# print the information
|
||||
if idx % 20 == 0:
|
||||
gc.collect()
|
||||
print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6))
|
||||
return norms, accuracies
|
||||
|
||||
|
||||
def main(search_space, meta_file: str, weight_dir, save_dir, xdata):
|
||||
API = NASBench201API if search_space == 'tss' else NASBench301API
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
api = API(meta_file, verbose=False)
|
||||
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
|
||||
print(time_string() + ' ' + '='*50)
|
||||
for data in datasets:
|
||||
hps = api.avaliable_hps
|
||||
for hp in hps:
|
||||
nums = api.statistics(data, hp=hp)
|
||||
total = sum([k*v for k, v in nums.items()])
|
||||
print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums))
|
||||
print(time_string() + ' ' + '='*50)
|
||||
|
||||
norms, accuracies = evaluate(api, weight_dir, xdata)
|
||||
|
||||
indexes = list(range(len(norms)))
|
||||
norm_indexes = sorted(indexes, key=lambda i: norms[i])
|
||||
accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
|
||||
labels = []
|
||||
for index in norm_indexes:
|
||||
labels.append(accy_indexes.index(index))
|
||||
|
||||
dpi, width, height = 200, 1400, 800
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 18, 12
|
||||
resnet_scale, resnet_alpha = 120, 0.5
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
ax = fig.add_subplot(111)
|
||||
plt.xlim(min(indexes), max(indexes))
|
||||
plt.ylim(min(indexes), max(indexes))
|
||||
# plt.ylabel('y').set_rotation(30)
|
||||
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
|
||||
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
|
||||
ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red' , alpha=0.8)
|
||||
ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
||||
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy')
|
||||
ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='Weight watcher')
|
||||
plt.grid(zorder=0)
|
||||
ax.set_axisbelow(True)
|
||||
plt.legend(loc=0, fontsize=LegendFontsize)
|
||||
ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize)
|
||||
ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize)
|
||||
save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
|
||||
save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
||||
print ('{:} save into {:}'.format(time_string(), save_path))
|
||||
|
||||
print('{:} finish this test.'.format(time_string()))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
||||
parser.add_argument('--save_dir', type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.')
|
||||
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
|
||||
parser.add_argument('--dataset' , type=str, default=None, help='.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
meta_file = Path(args.base_path + '.pth')
|
||||
weight_dir = Path(args.base_path + '-archive')
|
||||
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
|
||||
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
|
||||
|
||||
main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)
|
||||
|
@ -77,6 +77,7 @@ class NASBench201API(NASBenchMetaAPI):
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set(['12', '200'])
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_info = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
|
@ -75,11 +75,13 @@ class NASBench301API(NASBenchMetaAPI):
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
# This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
|
||||
self.arch2infos_dict = OrderedDict()
|
||||
self._avaliable_hps = set()
|
||||
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||
all_infos = file_path_or_dict['arch2infos'][xkey]
|
||||
hp2archres = OrderedDict()
|
||||
for hp_key, results in all_infos.items():
|
||||
hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
|
||||
self._avaliable_hps.add(hp_key) # save the avaliable hyper-parameter
|
||||
self.arch2infos_dict[xkey] = hp2archres
|
||||
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
|
||||
self.archstr2index = {}
|
||||
|
@ -57,6 +57,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta):
|
||||
def __repr__(self):
|
||||
return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename))
|
||||
|
||||
@property
|
||||
def avaliable_hps(self):
|
||||
return list(copy.deepcopy(self._avaliable_hps))
|
||||
|
||||
def random(self):
|
||||
"""Return a random index of all architectures."""
|
||||
return random.randint(0, len(self.meta_archs)-1)
|
||||
|
@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1
|
||||
echo script name: $0
|
||||
echo $# arguments
|
||||
if [ "$#" -ne 2 ] ;then
|
||||
echo "Input illegal number of parameters " $#
|
||||
echo "Need 2 parameters for dataset and use_12_epoch"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ "$TORCH_HOME" = "" ]; then
|
||||
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||
exit 1
|
||||
else
|
||||
echo "TORCH_HOME : $TORCH_HOME"
|
||||
fi
|
||||
|
||||
CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/NAS-Bench-201/test-weights.py \
|
||||
--base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 \
|
||||
--dataset $1 \
|
||||
--use_12 $2
|
Loading…
Reference in New Issue
Block a user