Reformulate the synthetic codes
This commit is contained in:
		
							
								
								
									
										2
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -56,5 +56,5 @@ jobs: | ||||
|           python -m pip install parameterized | ||||
|           python -m pip install torch torchvision | ||||
|           python --version | ||||
|           python -m pytest ./tests/test_synthetic.py -s | ||||
|           python -m pytest ./tests/test_synthetic*.py -s | ||||
|         shell: bash | ||||
|   | ||||
 Submodule .latent-data/NATS-Bench updated: f955e2ba13...47de7e1508
									
								
							| @@ -4,5 +4,7 @@ | ||||
| from .get_dataset_with_transform import get_datasets, get_nas_search_loaders | ||||
| from .SearchDatasetWrap import SearchDataset | ||||
|  | ||||
| from .synthetic_adaptive_environment import QuadraticFunc, CubicFunc, QuarticFunc | ||||
| from .synthetic_adaptive_environment import SynAdaptiveEnv | ||||
| from .math_base_funcs import QuadraticFunc, CubicFunc, QuarticFunc | ||||
| from .math_base_funcs import DynamicQuadraticFunc | ||||
| from .synthetic_utils import SinGenerator, ConstantGenerator | ||||
| from .synthetic_env import SyntheticDEnv | ||||
|   | ||||
| @@ -176,93 +176,31 @@ class QuarticFunc(FitFunc): | ||||
|         ) | ||||
| 
 | ||||
| 
 | ||||
| class SynAdaptiveEnv(data.Dataset): | ||||
|     """The synethtic dataset for adaptive environment. | ||||
| class DynamicQuadraticFunc(FitFunc): | ||||
|     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c.""" | ||||
| 
 | ||||
|     - x in [0, 1] | ||||
|     - y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) ) | ||||
|     - where | ||||
|     - the amplitude scale is a quadratic function of x | ||||
|     - the period-phase-shift is another quadratic function of x | ||||
|     def __init__(self, list_of_points=None): | ||||
|         super(DynamicQuadraticFunc, self).__init__(3, list_of_points) | ||||
|         self._timestamp = None | ||||
| 
 | ||||
|     """ | ||||
| 
 | ||||
|     def __init__( | ||||
|         self, | ||||
|         num: int = 100, | ||||
|         num_sin_phase: int = 7, | ||||
|         min_amplitude: float = 1, | ||||
|         max_amplitude: float = 4, | ||||
|         phase_shift: float = 0, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._amplitude_scale = QuadraticFunc( | ||||
|             [(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)] | ||||
|     def __getitem__(self, x): | ||||
|         self.check_valid() | ||||
|         return ( | ||||
|             self._params[0][self._timestamp] * x * x | ||||
|             + self._params[1][self._timestamp] * x | ||||
|             + self._params[2][self._timestamp] | ||||
|         ) | ||||
| 
 | ||||
|         self._num_sin_phase = num_sin_phase | ||||
|         self._interval = 1.0 / (float(num) - 1) | ||||
|         self._total_num = num | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|         fitting_data = [] | ||||
|         temp_max_scalar = 2 ** (num_sin_phase - 1) | ||||
|         for i in range(num_sin_phase): | ||||
|             value = (2 ** i) / temp_max_scalar | ||||
|             next_value = (2 ** (i + 1)) / temp_max_scalar | ||||
|             for _phase in (0, 0.25, 0.5, 0.75): | ||||
|                 inter_value = value + (next_value - value) * _phase | ||||
|                 fitting_data.append((inter_value, math.pi * (2 * i + _phase))) | ||||
|         self._period_phase_shift = QuarticFunc(fitting_data) | ||||
| 
 | ||||
|         # Training Set 60% | ||||
|         num_of_train = int(self._total_num * 0.6) | ||||
|         # Validation Set 20% | ||||
|         num_of_valid = int(self._total_num * 0.2) | ||||
|         # Test Set 20% | ||||
|         num_of_set = self._total_num - num_of_train - num_of_valid | ||||
|         all_indexes = list(range(self._total_num)) | ||||
|         if mode is None: | ||||
|             self._indexes = all_indexes | ||||
|         elif mode.lower() in ("train", "training"): | ||||
|             self._indexes = all_indexes[:num_of_train] | ||||
|         elif mode.lower() in ("valid", "validation"): | ||||
|             self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid] | ||||
|         elif mode.lower() in ("test", "testing"): | ||||
|             self._indexes = all_indexes[num_of_train + num_of_valid :] | ||||
|         else: | ||||
|             raise ValueError("Unkonwn mode of {:}".format(mode)) | ||||
| 
 | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
| 
 | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
| 
 | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         position = self._interval * index | ||||
|         value = self._amplitude_scale[position] * math.sin( | ||||
|             self._period_phase_shift[position] | ||||
|         ) | ||||
|         return index, position, value | ||||
| 
 | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|     def set_timestamp(self, timestamp): | ||||
|         self._timestamp = timestamp | ||||
| 
 | ||||
|     def __repr__(self): | ||||
|         return ( | ||||
|             "{name}({cur_num:}/{total} elements,\n" | ||||
|             "amplitude={amplitude},\n" | ||||
|             "period_phase_shift={period_phase_shift})".format( | ||||
|                 name=self.__class__.__name__, | ||||
|                 cur_num=self._total_num, | ||||
|                 total=len(self), | ||||
|                 amplitude=self._amplitude_scale, | ||||
|                 period_phase_shift=self._period_phase_shift, | ||||
|             ) | ||||
|         return "{name}(y = {a} * x^2 + {b} * x + {c})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
|             c=self._params[2], | ||||
|         ) | ||||
							
								
								
									
										81
									
								
								lib/datasets/synthetic_env.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										81
									
								
								lib/datasets/synthetic_env.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,81 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import math | ||||
| import abc | ||||
| import numpy as np | ||||
| from typing import List, Optional | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .synthetic_utils import UnifiedSplit | ||||
|  | ||||
|  | ||||
| class SyntheticDEnv(UnifiedSplit, data.Dataset): | ||||
|     """The synethtic dynamic environment.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         mean_generators: List[data.Dataset], | ||||
|         cov_generators: List[List[data.Dataset]], | ||||
|         num_per_task: int = 5000, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._ndim = len(mean_generators) | ||||
|         assert self._ndim == len( | ||||
|             cov_generators | ||||
|         ), "length does not match {:} vs. {:}".format(self._ndim, len(cov_generators)) | ||||
|         for cov_generator in cov_generators: | ||||
|             assert self._ndim == len( | ||||
|                 cov_generator | ||||
|             ), "length does not match {:} vs. {:}".format( | ||||
|                 self._ndim, len(cov_generator) | ||||
|             ) | ||||
|         self._num_per_task = num_per_task | ||||
|         self._total_num = len(mean_generators[0]) | ||||
|         for mean_generator in mean_generators: | ||||
|             assert self._total_num == len(mean_generator) | ||||
|         for cov_generator in cov_generators: | ||||
|             for cov_g in cov_generator: | ||||
|                 assert self._total_num == len(cov_g) | ||||
|  | ||||
|         self._mean_generators = mean_generators | ||||
|         self._cov_generators = cov_generators | ||||
|  | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
|  | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         mean_list = [generator[index][-1] for generator in self._mean_generators] | ||||
|         cov_matrix = [ | ||||
|             [cov_gen[index][-1] for cov_gen in cov_generator] | ||||
|             for cov_generator in self._cov_generators | ||||
|         ] | ||||
|  | ||||
|         dataset = np.random.multivariate_normal( | ||||
|             mean_list, cov_matrix, size=self._num_per_task | ||||
|         ) | ||||
|         return index, torch.Tensor(dataset) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             cur_num=len(self), | ||||
|             total=self._total_num, | ||||
|             ndim=self._ndim, | ||||
|             num_per_task=self._num_per_task, | ||||
|         ) | ||||
							
								
								
									
										157
									
								
								lib/datasets/synthetic_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								lib/datasets/synthetic_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,157 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import math | ||||
| import abc | ||||
| import numpy as np | ||||
| from typing import Optional | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .math_base_funcs import QuadraticFunc, QuarticFunc | ||||
|  | ||||
|  | ||||
| class UnifiedSplit: | ||||
|     """A class to unify the split strategy.""" | ||||
|  | ||||
|     def __init__(self, total_num, mode): | ||||
|         # Training Set 60% | ||||
|         num_of_train = int(total_num * 0.6) | ||||
|         # Validation Set 20% | ||||
|         num_of_valid = int(total_num * 0.2) | ||||
|         # Test Set 20% | ||||
|         num_of_set = total_num - num_of_train - num_of_valid | ||||
|         all_indexes = list(range(total_num)) | ||||
|         if mode is None: | ||||
|             self._indexes = all_indexes | ||||
|         elif mode.lower() in ("train", "training"): | ||||
|             self._indexes = all_indexes[:num_of_train] | ||||
|         elif mode.lower() in ("valid", "validation"): | ||||
|             self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid] | ||||
|         elif mode.lower() in ("test", "testing"): | ||||
|             self._indexes = all_indexes[num_of_train + num_of_valid :] | ||||
|         else: | ||||
|             raise ValueError("Unkonwn mode of {:}".format(mode)) | ||||
|         self._mode = mode | ||||
|  | ||||
|     @property | ||||
|     def mode(self): | ||||
|         return self._mode | ||||
|  | ||||
|  | ||||
| class SinGenerator(UnifiedSplit, data.Dataset): | ||||
|     """The synethtic generator for the dynamically changing environment. | ||||
|  | ||||
|     - x in [0, 1] | ||||
|     - y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) ) | ||||
|     - where | ||||
|     - the amplitude scale is a quadratic function of x | ||||
|     - the period-phase-shift is another quadratic function of x | ||||
|  | ||||
|     """ | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         num: int = 100, | ||||
|         num_sin_phase: int = 7, | ||||
|         min_amplitude: float = 1, | ||||
|         max_amplitude: float = 4, | ||||
|         phase_shift: float = 0, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._amplitude_scale = QuadraticFunc( | ||||
|             [(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)] | ||||
|         ) | ||||
|  | ||||
|         self._num_sin_phase = num_sin_phase | ||||
|         self._interval = 1.0 / (float(num) - 1) | ||||
|         self._total_num = num | ||||
|  | ||||
|         fitting_data = [] | ||||
|         temp_max_scalar = 2 ** (num_sin_phase - 1) | ||||
|         for i in range(num_sin_phase): | ||||
|             value = (2 ** i) / temp_max_scalar | ||||
|             next_value = (2 ** (i + 1)) / temp_max_scalar | ||||
|             for _phase in (0, 0.25, 0.5, 0.75): | ||||
|                 inter_value = value + (next_value - value) * _phase | ||||
|                 fitting_data.append((inter_value, math.pi * (2 * i + _phase))) | ||||
|         self._period_phase_shift = QuarticFunc(fitting_data) | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|         self._transform = lambda x: x | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
|  | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
|  | ||||
|     def set_transform(self, transform): | ||||
|         self._transform = transform | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         position = self._interval * index | ||||
|         value = self._amplitude_scale[position] * math.sin( | ||||
|             self._period_phase_shift[position] | ||||
|         ) | ||||
|         return index, position, self._transform(value) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return ( | ||||
|             "{name}({cur_num:}/{total} elements,\n" | ||||
|             "amplitude={amplitude},\n" | ||||
|             "period_phase_shift={period_phase_shift})".format( | ||||
|                 name=self.__class__.__name__, | ||||
|                 cur_num=len(self), | ||||
|                 total=self._total_num, | ||||
|                 amplitude=self._amplitude_scale, | ||||
|                 period_phase_shift=self._period_phase_shift, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class ConstantGenerator(UnifiedSplit, data.Dataset): | ||||
|     """The constant generator.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         num: int = 100, | ||||
|         constant: float = 0.1, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._total_num = num | ||||
|         self._constant = constant | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
|  | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         return index, index, self._constant | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({cur_num:}/{total} elements)".format( | ||||
|             name=self.__class__.__name__, | ||||
|             cur_num=len(self), | ||||
|             total=self._total_num, | ||||
|         ) | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										112
									
								
								notebooks/TOT/synthetic-data.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										112
									
								
								notebooks/TOT/synthetic-data.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										30
									
								
								tests/test_synthetic_env.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								tests/test_synthetic_env.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,30 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # pytest tests/test_synthetic_env.py -s             # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from datasets import ConstantGenerator, SinGenerator | ||||
| from datasets import SyntheticDEnv | ||||
|  | ||||
|  | ||||
| class TestSynethicEnv(unittest.TestCase): | ||||
|     """Test the synethtic environment.""" | ||||
|  | ||||
|     def test_simple(self): | ||||
|         mean_generator = SinGenerator() | ||||
|         std_generator = ConstantGenerator(constant=0.5) | ||||
|  | ||||
|         dataset = SyntheticDEnv([mean_generator], [[std_generator]]) | ||||
|         print(dataset) | ||||
|         for timestamp, tau in dataset: | ||||
|             assert tau.shape == (5000, 1) | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest tests/test_synthetic.py -s                 # | ||||
| # pytest tests/test_synthetic_utils.py -s           # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| @@ -14,7 +14,7 @@ if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| 
 | ||||
| from datasets import QuadraticFunc | ||||
| from datasets import SynAdaptiveEnv | ||||
| from datasets import ConstantGenerator, SinGenerator | ||||
| 
 | ||||
| 
 | ||||
| class TestQuadraticFunc(unittest.TestCase): | ||||
| @@ -40,11 +40,21 @@ class TestQuadraticFunc(unittest.TestCase): | ||||
|         self.assertTrue(abs(function[1] - 1) < thresh) | ||||
| 
 | ||||
| 
 | ||||
| class TestSynAdaptiveEnv(unittest.TestCase): | ||||
|     """Test the synethtic adaptive environment.""" | ||||
| class TestConstantGenerator(unittest.TestCase): | ||||
|     """Test the constant data generator.""" | ||||
| 
 | ||||
|     def test_simple(self): | ||||
|         dataset = SynAdaptiveEnv() | ||||
|         dataset = ConstantGenerator() | ||||
|         for i, (idx, t, x) in enumerate(dataset): | ||||
|             assert i == idx, "First loop: {:} vs {:}".format(i, idx) | ||||
|             assert x == 0.1 | ||||
| 
 | ||||
| 
 | ||||
| class TestSinGenerator(unittest.TestCase): | ||||
|     """Test the synethtic data generator.""" | ||||
| 
 | ||||
|     def test_simple(self): | ||||
|         dataset = SinGenerator() | ||||
|         for i, (idx, t, x) in enumerate(dataset): | ||||
|             assert i == idx, "First loop: {:} vs {:}".format(i, idx) | ||||
|         for i, (idx, t, x) in enumerate(dataset): | ||||
		Reference in New Issue
	
	Block a user