update baseline NAS algos
This commit is contained in:
parent
5c73aeb50b
commit
7843940846
2
.gitignore
vendored
2
.gitignore
vendored
@ -110,4 +110,4 @@ logs
|
|||||||
|
|
||||||
# snapshot
|
# snapshot
|
||||||
a.pth
|
a.pth
|
||||||
cal-merge.sh
|
cal-merge*.sh
|
||||||
|
@ -9,6 +9,51 @@ In this Markdown file, we provide:
|
|||||||
|
|
||||||
Note: please use `PyTorch >= 1.1.0` and `Python >= 3.6.0`.
|
Note: please use `PyTorch >= 1.1.0` and `Python >= 3.6.0`.
|
||||||
|
|
||||||
|
## How to Use AA-NAS-Bench
|
||||||
|
|
||||||
|
1. Creating AA-NAS-Bench API from a file:
|
||||||
|
```
|
||||||
|
from aa_nas_api import AANASBenchAPI
|
||||||
|
api = AANASBenchAPI('$path_to_meta_aa_nas_bench_file')
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
|
||||||
|
```
|
||||||
|
num = len(api)
|
||||||
|
for i, arch_str in enumerate(api):
|
||||||
|
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Show the results of all trials for a single architecture:
|
||||||
|
```
|
||||||
|
# show all information for a specific architecture
|
||||||
|
api.show(1)
|
||||||
|
api.show(2)
|
||||||
|
|
||||||
|
# show the mean loss and accuracy of an architecture
|
||||||
|
info = api.query_meta_info_by_index(1)
|
||||||
|
loss, accuracy = info.get_metrics('cifar10', 'train')
|
||||||
|
flops, params, latency = info.get_comput_costs('cifar100')
|
||||||
|
|
||||||
|
# get the detailed information
|
||||||
|
results = api.query_by_index(1, 'cifar100')
|
||||||
|
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
|
||||||
|
print ('Latency : {:}'.format(results[0].get_latency()))
|
||||||
|
print ('Train Info : {:}'.format(results[0].get_train()))
|
||||||
|
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
|
||||||
|
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
|
||||||
|
# for the metric after a specific epoch
|
||||||
|
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Query the index of an architecture by string
|
||||||
|
```
|
||||||
|
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
|
||||||
|
api.show(index)
|
||||||
|
```
|
||||||
|
|
||||||
|
5. For other usages, please see `lib/aa_nas_api/api.py`
|
||||||
|
|
||||||
## Instruction to Generate AA-NAS-Bench
|
## Instruction to Generate AA-NAS-Bench
|
||||||
|
|
||||||
1. generate the meta file for AA-NAS-Bench using the following script, where `AA-NAS-BENCH` indicates the name and `4` indicates the maximum number of nodes in a cell.
|
1. generate the meta file for AA-NAS-Bench using the following script, where `AA-NAS-BENCH` indicates the name and `4` indicates the maximum number of nodes in a cell.
|
||||||
@ -46,19 +91,18 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh resnet 16 5
|
|||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/AA-NAS-train-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
|
||||||
```
|
```
|
||||||
|
|
||||||
[option] load the parameters of a trained network.
|
## To Reproduce 10 Baseline NAS Algorithms in AA-NAS-Bench
|
||||||
```
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
## To reproduce 10 baseline NAS algorithms in AA-NAS-Bench
|
|
||||||
|
|
||||||
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our AA-NAS-Bench.
|
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our AA-NAS-Bench.
|
||||||
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
|
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
|
||||||
|
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`
|
-[1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
|
-[2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
|
-[3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
|
-[4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
|
-[5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
|
||||||
- `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
|
-[6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
|
||||||
|
-[7] `bash ./scripts-search/algos/R-EA.sh -1`
|
||||||
|
-[8] `bash ./scripts-search/algos/Random.sh -1`
|
||||||
|
-[9] `bash ./scripts-search/algos/REINFORCE.sh -1`
|
||||||
|
-[10] `bash ./scripts-search/algos/BOHB.sh -1`
|
||||||
|
@ -1,6 +1,3 @@
|
|||||||
##################################################
|
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
||||||
##################################################
|
|
||||||
import os, sys, time, argparse, collections
|
import os, sys, time, argparse, collections
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
import torch
|
import torch
|
||||||
@ -167,7 +164,6 @@ def simplify(save_dir, meta_file, basestr, target_dir):
|
|||||||
arch_time = AverageMeter()
|
arch_time = AverageMeter()
|
||||||
for idx, arch_index in enumerate(arch_indexes):
|
for idx, arch_index in enumerate(arch_indexes):
|
||||||
checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index)))
|
checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index)))
|
||||||
arch_info = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict)
|
|
||||||
try:
|
try:
|
||||||
arch_info = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict)
|
arch_info = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict)
|
||||||
num_seeds[ len(checkpoints) ] += 1
|
num_seeds[ len(checkpoints) ] += 1
|
||||||
@ -181,7 +177,7 @@ def simplify(save_dir, meta_file, basestr, target_dir):
|
|||||||
torch.save(arch_info.state_dict(), to_save_allarc / '{:}-FULL.pth'.format(arch_index))
|
torch.save(arch_info.state_dict(), to_save_allarc / '{:}-FULL.pth'.format(arch_index))
|
||||||
#torch.save(arch_info, to_save_allarc / '{:}-FULL.pth'.format(arch_index))
|
#torch.save(arch_info, to_save_allarc / '{:}-FULL.pth'.format(arch_index))
|
||||||
arch_info.clear_params()
|
arch_info.clear_params()
|
||||||
torch.save(arch_info, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index))
|
torch.save(arch_info.state_dict(), to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index))
|
||||||
# measure elapsed time
|
# measure elapsed time
|
||||||
arch_time.update(time.time() - end_time)
|
arch_time.update(time.time() - end_time)
|
||||||
end_time = time.time()
|
end_time = time.time()
|
||||||
@ -241,7 +237,7 @@ def merge_all(save_dir, meta_file, basestr):
|
|||||||
xevalindexs = sub_ckps['evaluated_indexes']
|
xevalindexs = sub_ckps['evaluated_indexes']
|
||||||
for eval_index in xevalindexs:
|
for eval_index in xevalindexs:
|
||||||
assert eval_index not in evaluated_indexes and eval_index not in arch2infos
|
assert eval_index not in evaluated_indexes and eval_index not in arch2infos
|
||||||
arch2infos[eval_index] = xarch2infos[eval_index]
|
arch2infos[eval_index] = xarch2infos[eval_index].state_dict()
|
||||||
evaluated_indexes.add( eval_index )
|
evaluated_indexes.add( eval_index )
|
||||||
print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(subdir2archs), ckp_path, len(xevalindexs)))
|
print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(subdir2archs), ckp_path, len(xevalindexs)))
|
||||||
else:
|
else:
|
||||||
|
@ -58,8 +58,10 @@ def test_aa_nas_api():
|
|||||||
arch_result = ArchResults.create_from_state_dict('output/AA-NAS-BENCH-4/simplifies/architectures/000002-FULL.pth')
|
arch_result = ArchResults.create_from_state_dict('output/AA-NAS-BENCH-4/simplifies/architectures/000002-FULL.pth')
|
||||||
arch_result.show(True)
|
arch_result.show(True)
|
||||||
result = arch_result.query('cifar100')
|
result = arch_result.query('cifar100')
|
||||||
#xfile = '/home/dxy/search-configures/output/TINY-NAS-BENCHMARK-4/simplifies/C16-N5-final-infos.pth'
|
#xfile = 'output/AA-NAS-BENCH-4/simplifies/000000-000389-C16-N5.pth'
|
||||||
#api = AANASBenchAPI(xfile)
|
api = AANASBenchAPI('output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth')
|
||||||
|
results = api.query_by_index(1, 'cifar100')
|
||||||
|
print ('There are {:} trials for this architecture [{:}] on cifar10'.format(len(results), api[1]))
|
||||||
import pdb; pdb.set_trace()
|
import pdb; pdb.set_trace()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
177
exps/algos/BOHB.py
Normal file
177
exps/algos/BOHB.py
Normal file
@ -0,0 +1,177 @@
|
|||||||
|
##################################################
|
||||||
|
# required to install hpbandster #################
|
||||||
|
##################################################
|
||||||
|
import os, sys, time, glob, random, argparse
|
||||||
|
import numpy as np, collections
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.distributions import Categorical
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, SearchDataset
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import get_model_infos, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from aa_nas_api import AANASBenchAPI
|
||||||
|
from models import CellStructure, get_search_spaces
|
||||||
|
from R_EA import train_and_eval
|
||||||
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
||||||
|
import ConfigSpace
|
||||||
|
from hpbandster.optimizers.bohb import BOHB
|
||||||
|
import hpbandster.core.nameserver as hpns
|
||||||
|
from hpbandster.core.worker import Worker
|
||||||
|
|
||||||
|
|
||||||
|
def get_configuration_space(max_nodes, search_space):
|
||||||
|
cs = ConfigSpace.ConfigurationSpace()
|
||||||
|
#edge2index = {}
|
||||||
|
for i in range(1, max_nodes):
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
||||||
|
return cs
|
||||||
|
|
||||||
|
|
||||||
|
def config2structure_func(max_nodes):
|
||||||
|
def config2structure(config):
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
op_name = config[node_str]
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
return config2structure
|
||||||
|
|
||||||
|
|
||||||
|
class MyWorker(Worker):
|
||||||
|
|
||||||
|
def __init__(self, *args, sleep_interval=0, convert_func=None, nas_bench=None, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.sleep_interval = sleep_interval
|
||||||
|
self.convert_func = convert_func
|
||||||
|
self.nas_bench = nas_bench
|
||||||
|
self.test_time = 0
|
||||||
|
|
||||||
|
def compute(self, config, budget, **kwargs):
|
||||||
|
structure = self.convert_func( config )
|
||||||
|
reward = train_and_eval(structure, self.nas_bench, None)
|
||||||
|
self.test_time += 1
|
||||||
|
return ({
|
||||||
|
'loss': float(100-reward),
|
||||||
|
'info': None})
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads( xargs.workers )
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
|
||||||
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||||
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||||
|
cifar_split = load_config(split_Fpath, None, None)
|
||||||
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||||
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
||||||
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||||
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||||
|
# To split data
|
||||||
|
train_data_v2 = deepcopy(train_data)
|
||||||
|
train_data_v2.transform = valid_data.transform
|
||||||
|
valid_data = train_data_v2
|
||||||
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||||
|
# data loader
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
||||||
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
||||||
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
||||||
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
||||||
|
|
||||||
|
|
||||||
|
# nas dataset load
|
||||||
|
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
|
||||||
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||||
|
cs = get_configuration_space(xargs.max_nodes, search_space)
|
||||||
|
|
||||||
|
config2structure = config2structure_func(xargs.max_nodes)
|
||||||
|
hb_run_id = '0'
|
||||||
|
|
||||||
|
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
|
||||||
|
ns_host, ns_port = NS.start()
|
||||||
|
num_workers = 1
|
||||||
|
|
||||||
|
nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||||
|
logger.log('{:} Create AA-NAS-BENCH-API DONE'.format(time_string()))
|
||||||
|
workers = []
|
||||||
|
for i in range(num_workers):
|
||||||
|
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i)
|
||||||
|
w.run(background=True)
|
||||||
|
workers.append(w)
|
||||||
|
|
||||||
|
bohb = BOHB(configspace=cs,
|
||||||
|
run_id=hb_run_id,
|
||||||
|
eta=3, min_budget=3, max_budget=108,
|
||||||
|
nameserver=ns_host,
|
||||||
|
nameserver_port=ns_port,
|
||||||
|
num_samples=xargs.num_samples,
|
||||||
|
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
|
||||||
|
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
|
||||||
|
# optimization_strategy=xargs.strategy, num_samples=xargs.num_samples,
|
||||||
|
|
||||||
|
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
||||||
|
|
||||||
|
bohb.shutdown(shutdown_workers=True)
|
||||||
|
NS.shutdown()
|
||||||
|
|
||||||
|
id2config = results.get_id2config_mapping()
|
||||||
|
incumbent = results.get_incumbent_id()
|
||||||
|
|
||||||
|
logger.log('Best found configuration: {:}'.format(id2config[incumbent]['config']))
|
||||||
|
best_arch = config2structure( id2config[incumbent]['config'] )
|
||||||
|
|
||||||
|
if nas_bench is not None:
|
||||||
|
info = nas_bench.query_by_arch( best_arch )
|
||||||
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||||
|
else : logger.log('{:}'.format(info))
|
||||||
|
logger.log('-'*100)
|
||||||
|
|
||||||
|
logger.log('workers : {:}'.format(workers[0].test_time))
|
||||||
|
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||||
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
# channels and number-of-cells
|
||||||
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||||
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||||
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||||
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||||
|
# BOHB
|
||||||
|
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
|
||||||
|
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
|
||||||
|
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
|
||||||
|
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
|
||||||
|
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
||||||
|
parser.add_argument('--n_iters', default=100, type=int, nargs='?', help='number of iterations for optimization method')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||||
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
main(args)
|
95
exps/algos/RANDOM.py
Normal file
95
exps/algos/RANDOM.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
import os, sys, time, glob, random, argparse
|
||||||
|
import numpy as np, collections
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from pathlib import Path
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, SearchDataset
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import get_model_infos, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from models import get_search_spaces
|
||||||
|
from aa_nas_api import AANASBenchAPI
|
||||||
|
from R_EA import train_and_eval, random_architecture_func
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads( xargs.workers )
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
|
||||||
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||||
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||||
|
cifar_split = load_config(split_Fpath, None, None)
|
||||||
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||||
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
||||||
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||||
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||||
|
# To split data
|
||||||
|
train_data_v2 = deepcopy(train_data)
|
||||||
|
train_data_v2.transform = valid_data.transform
|
||||||
|
valid_data = train_data_v2
|
||||||
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||||
|
# data loader
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
||||||
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
||||||
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
||||||
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
||||||
|
|
||||||
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||||
|
random_arch = random_architecture_func(xargs.max_nodes, search_space)
|
||||||
|
#x =random_arch() ; y = mutate_arch(x)
|
||||||
|
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
|
||||||
|
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
|
||||||
|
nas_bench = None
|
||||||
|
else:
|
||||||
|
logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset))
|
||||||
|
nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||||
|
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||||
|
best_arch, best_acc = None, -1
|
||||||
|
for idx in range(xargs.random_num):
|
||||||
|
arch = random_arch()
|
||||||
|
accuracy = train_and_eval(arch, nas_bench, extra_info)
|
||||||
|
if best_arch is None or best_acc < accuracy:
|
||||||
|
best_acc, best_arch = accuracy, arch
|
||||||
|
logger.log('[{:03d}/{:03d}] : {:} : accuracy = {:.2f}%'.format(idx, xargs.random_num, arch, accuracy))
|
||||||
|
logger.log('{:} best arch is {:}, accuracy = {:.2f}%'.format(time_string(), best_arch, best_acc))
|
||||||
|
|
||||||
|
if nas_bench is not None:
|
||||||
|
info = nas_bench.query_by_arch( best_arch )
|
||||||
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||||
|
else : logger.log('{:}'.format(info))
|
||||||
|
logger.log('-'*100)
|
||||||
|
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||||
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
# channels and number-of-cells
|
||||||
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||||
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||||
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||||
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||||
|
parser.add_argument('--random_num', type=int, help='The number of random selected architectures.')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||||
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
main(args)
|
230
exps/algos/R_EA.py
Normal file
230
exps/algos/R_EA.py
Normal file
@ -0,0 +1,230 @@
|
|||||||
|
import os, sys, time, glob, random, argparse
|
||||||
|
import numpy as np, collections
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from pathlib import Path
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, SearchDataset
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import get_model_infos, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from aa_nas_api import AANASBenchAPI
|
||||||
|
from models import CellStructure, get_search_spaces
|
||||||
|
|
||||||
|
|
||||||
|
# Regularized Evolution for Image Classifier Architecture Search
|
||||||
|
class Model(object):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.arch = None
|
||||||
|
self.accuracy = None
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
"""Prints a readable version of this bitstring."""
|
||||||
|
return '{:}'.format(self.arch)
|
||||||
|
|
||||||
|
|
||||||
|
def valid_func(xloader, network, criterion):
|
||||||
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||||
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||||
|
network.train()
|
||||||
|
end = time.time()
|
||||||
|
with torch.no_grad():
|
||||||
|
for step, (arch_inputs, arch_targets) in enumerate(xloader):
|
||||||
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
# prediction
|
||||||
|
_, logits = network(arch_inputs)
|
||||||
|
arch_loss = criterion(logits, arch_targets)
|
||||||
|
# record
|
||||||
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||||
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||||
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
||||||
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
||||||
|
# measure elapsed time
|
||||||
|
batch_time.update(time.time() - end)
|
||||||
|
end = time.time()
|
||||||
|
return arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_eval(arch, nas_bench, extra_info):
|
||||||
|
if nas_bench is not None:
|
||||||
|
arch_index = nas_bench.query_index_by_arch( arch )
|
||||||
|
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
|
||||||
|
info = nas_bench.arch2infos[ arch_index ]
|
||||||
|
_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25) # use the validation accuracy after 25 training epochs
|
||||||
|
else:
|
||||||
|
# train a model from scratch.
|
||||||
|
raise ValueError('NOT IMPLEMENT YET')
|
||||||
|
return valid_acc
|
||||||
|
|
||||||
|
|
||||||
|
def random_architecture_func(max_nodes, op_names):
|
||||||
|
# return a random architecture
|
||||||
|
def random_architecture():
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
op_name = random.choice( op_names )
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
return random_architecture
|
||||||
|
|
||||||
|
|
||||||
|
def mutate_arch_func(op_names):
|
||||||
|
"""Computes the architecture for a child of the given parent architecture.
|
||||||
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
||||||
|
"""
|
||||||
|
def mutate_arch_func(parent_arch):
|
||||||
|
child_arch = deepcopy( parent_arch )
|
||||||
|
node_id = random.randint(0, len(child_arch.nodes)-1)
|
||||||
|
node_info = list( child_arch.nodes[node_id] )
|
||||||
|
snode_id = random.randint(0, len(node_info)-1)
|
||||||
|
xop = random.choice( op_names )
|
||||||
|
while xop == node_info[snode_id][0]:
|
||||||
|
xop = random.choice( op_names )
|
||||||
|
node_info[snode_id] = (xop, node_info[snode_id][1])
|
||||||
|
child_arch.nodes[node_id] = tuple( node_info )
|
||||||
|
return child_arch
|
||||||
|
return mutate_arch_func
|
||||||
|
|
||||||
|
|
||||||
|
def regularized_evolution(cycles, population_size, sample_size, random_arch, mutate_arch, nas_bench, extra_info):
|
||||||
|
"""Algorithm for regularized evolution (i.e. aging evolution).
|
||||||
|
|
||||||
|
Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
|
||||||
|
Classifier Architecture Search".
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cycles: the number of cycles the algorithm should run for.
|
||||||
|
population_size: the number of individuals to keep in the population.
|
||||||
|
sample_size: the number of individuals that should participate in each tournament.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
history: a list of `Model` instances, representing all the models computed
|
||||||
|
during the evolution experiment.
|
||||||
|
"""
|
||||||
|
population = collections.deque()
|
||||||
|
history = [] # Not used by the algorithm, only used to report results.
|
||||||
|
|
||||||
|
# Initialize the population with random models.
|
||||||
|
while len(population) < population_size:
|
||||||
|
model = Model()
|
||||||
|
model.arch = random_arch()
|
||||||
|
model.accuracy = train_and_eval(model.arch, nas_bench, extra_info)
|
||||||
|
population.append(model)
|
||||||
|
history.append(model)
|
||||||
|
|
||||||
|
# Carry out evolution in cycles. Each cycle produces a model and removes
|
||||||
|
# another.
|
||||||
|
while len(history) < cycles:
|
||||||
|
# Sample randomly chosen models from the current population.
|
||||||
|
sample = []
|
||||||
|
while len(sample) < sample_size:
|
||||||
|
# Inefficient, but written this way for clarity. In the case of neural
|
||||||
|
# nets, the efficiency of this line is irrelevant because training neural
|
||||||
|
# nets is the rate-determining step.
|
||||||
|
candidate = random.choice(list(population))
|
||||||
|
sample.append(candidate)
|
||||||
|
|
||||||
|
# The parent is the best model in the sample.
|
||||||
|
parent = max(sample, key=lambda i: i.accuracy)
|
||||||
|
|
||||||
|
# Create the child model and store it.
|
||||||
|
child = Model()
|
||||||
|
child.arch = mutate_arch(parent.arch)
|
||||||
|
child.accuracy = train_and_eval(child.arch, nas_bench, extra_info)
|
||||||
|
population.append(child)
|
||||||
|
history.append(child)
|
||||||
|
|
||||||
|
# Remove the oldest model.
|
||||||
|
population.popleft()
|
||||||
|
return history
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads( xargs.workers )
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
|
||||||
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||||
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||||
|
cifar_split = load_config(split_Fpath, None, None)
|
||||||
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||||
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
||||||
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||||
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||||
|
# To split data
|
||||||
|
train_data_v2 = deepcopy(train_data)
|
||||||
|
train_data_v2.transform = valid_data.transform
|
||||||
|
valid_data = train_data_v2
|
||||||
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||||
|
# data loader
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
||||||
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
||||||
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
||||||
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
||||||
|
|
||||||
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||||
|
random_arch = random_architecture_func(xargs.max_nodes, search_space)
|
||||||
|
mutate_arch = mutate_arch_func(search_space)
|
||||||
|
#x =random_arch() ; y = mutate_arch(x)
|
||||||
|
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
|
||||||
|
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
|
||||||
|
nas_bench = None
|
||||||
|
else:
|
||||||
|
logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset))
|
||||||
|
nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||||
|
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||||
|
history = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info)
|
||||||
|
logger.log('{:} regularized_evolution finish with history of {:} arch.'.format(time_string(), len(history)))
|
||||||
|
best_arch = max(history, key=lambda i: i.accuracy)
|
||||||
|
best_arch = best_arch.arch
|
||||||
|
logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
|
||||||
|
|
||||||
|
if nas_bench is not None:
|
||||||
|
info = nas_bench.query_by_arch( best_arch )
|
||||||
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||||
|
else : logger.log('{:}'.format(info))
|
||||||
|
logger.log('-'*100)
|
||||||
|
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||||
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
# channels and number-of-cells
|
||||||
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||||
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||||
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||||
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||||
|
parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.')
|
||||||
|
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
||||||
|
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
||||||
|
parser.add_argument('--ea_fast_by_api', type=int, help='Use our API to speed up the experiments or not.')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||||
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
args.ea_fast_by_api = args.ea_fast_by_api > 0
|
||||||
|
main(args)
|
187
exps/algos/reinforce.py
Normal file
187
exps/algos/reinforce.py
Normal file
@ -0,0 +1,187 @@
|
|||||||
|
##################################################
|
||||||
|
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py
|
||||||
|
##################################################
|
||||||
|
import os, sys, time, glob, random, argparse
|
||||||
|
import numpy as np, collections
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.distributions import Categorical
|
||||||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||||
|
from config_utils import load_config, dict2config, configure2str
|
||||||
|
from datasets import get_datasets, SearchDataset
|
||||||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||||
|
from utils import get_model_infos, obtain_accuracy
|
||||||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||||
|
from aa_nas_api import AANASBenchAPI
|
||||||
|
from models import CellStructure, get_search_spaces
|
||||||
|
from R_EA import train_and_eval
|
||||||
|
|
||||||
|
|
||||||
|
class Policy(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, max_nodes, search_space):
|
||||||
|
super(Policy, self).__init__()
|
||||||
|
self.max_nodes = max_nodes
|
||||||
|
self.search_space = deepcopy(search_space)
|
||||||
|
self.edge2index = {}
|
||||||
|
for i in range(1, max_nodes):
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
self.edge2index[ node_str ] = len(self.edge2index)
|
||||||
|
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(len(self.edge2index), len(search_space)) )
|
||||||
|
|
||||||
|
def generate_arch(self, actions):
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, self.max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
op_name = self.search_space[ actions[ self.edge2index[ node_str ] ] ]
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
|
||||||
|
def genotype(self):
|
||||||
|
genotypes = []
|
||||||
|
for i in range(1, self.max_nodes):
|
||||||
|
xlist = []
|
||||||
|
for j in range(i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
with torch.no_grad():
|
||||||
|
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||||
|
op_name = self.search_space[ weights.argmax().item() ]
|
||||||
|
xlist.append((op_name, j))
|
||||||
|
genotypes.append( tuple(xlist) )
|
||||||
|
return CellStructure( genotypes )
|
||||||
|
|
||||||
|
def forward(self):
|
||||||
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||||
|
return alphas
|
||||||
|
|
||||||
|
|
||||||
|
class ExponentialMovingAverage(object):
|
||||||
|
"""Class that maintains an exponential moving average."""
|
||||||
|
|
||||||
|
def __init__(self, momentum):
|
||||||
|
self._numerator = 0
|
||||||
|
self._denominator = 0
|
||||||
|
self._momentum = momentum
|
||||||
|
|
||||||
|
def update(self, value):
|
||||||
|
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
||||||
|
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
||||||
|
|
||||||
|
def value(self):
|
||||||
|
"""Return the current value of the moving average"""
|
||||||
|
return self._numerator / self._denominator
|
||||||
|
|
||||||
|
|
||||||
|
def select_action(policy):
|
||||||
|
probs = policy()
|
||||||
|
m = Categorical(probs)
|
||||||
|
action = m.sample()
|
||||||
|
#policy.saved_log_probs.append(m.log_prob(action))
|
||||||
|
return m.log_prob(action), action.cpu().tolist()
|
||||||
|
|
||||||
|
|
||||||
|
def main(xargs):
|
||||||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||||
|
torch.backends.cudnn.enabled = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.set_num_threads( xargs.workers )
|
||||||
|
prepare_seed(xargs.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
|
||||||
|
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
|
||||||
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||||
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||||
|
cifar_split = load_config(split_Fpath, None, None)
|
||||||
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||||
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
||||||
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||||
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||||
|
# To split data
|
||||||
|
train_data_v2 = deepcopy(train_data)
|
||||||
|
train_data_v2.transform = valid_data.transform
|
||||||
|
valid_data = train_data_v2
|
||||||
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||||
|
# data loader
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
||||||
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
||||||
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
||||||
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
||||||
|
|
||||||
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||||
|
policy = Policy(xargs.max_nodes, search_space)
|
||||||
|
optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
|
||||||
|
eps = np.finfo(np.float32).eps.item()
|
||||||
|
baseline = ExponentialMovingAverage(xargs.EMA_momentum)
|
||||||
|
logger.log('policy : {:}'.format(policy))
|
||||||
|
logger.log('optimizer : {:}'.format(optimizer))
|
||||||
|
logger.log('eps : {:}'.format(eps))
|
||||||
|
|
||||||
|
# nas dataset load
|
||||||
|
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
|
||||||
|
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
|
||||||
|
nas_bench = None
|
||||||
|
else:
|
||||||
|
logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset))
|
||||||
|
nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||||
|
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||||
|
|
||||||
|
# REINFORCE
|
||||||
|
# attempts = 0
|
||||||
|
for istep in range(xargs.RL_steps):
|
||||||
|
log_prob, action = select_action( policy )
|
||||||
|
arch = policy.generate_arch( action )
|
||||||
|
reward = train_and_eval(arch, nas_bench, extra_info)
|
||||||
|
|
||||||
|
baseline.update(reward)
|
||||||
|
# calculate loss
|
||||||
|
policy_loss = ( -log_prob * (reward - baseline.value()) ).sum()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
policy_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
logger.log('step [{:3d}/{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(istep, xargs.RL_steps, baseline.value(), policy_loss.item(), policy.genotype()))
|
||||||
|
#logger.log('----> {:}'.format(policy.arch_parameters))
|
||||||
|
logger.log('')
|
||||||
|
|
||||||
|
best_arch = policy.genotype()
|
||||||
|
|
||||||
|
if nas_bench is not None:
|
||||||
|
info = nas_bench.query_by_arch( best_arch )
|
||||||
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||||
|
else : logger.log('{:}'.format(info))
|
||||||
|
logger.log('-'*100)
|
||||||
|
|
||||||
|
logger.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||||||
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
|
# channels and number-of-cells
|
||||||
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||||
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||||
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||||
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||||
|
parser.add_argument('--learning_rate', type=float, help='The learning rate for REINFORCE.')
|
||||||
|
parser.add_argument('--RL_steps', type=int, help='The steps for REINFORCE.')
|
||||||
|
parser.add_argument('--EMA_momentum', type=float, help='The momentum value for EMA.')
|
||||||
|
# log
|
||||||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||||
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||||
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||||
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||||
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||||
|
main(args)
|
@ -1,5 +1,5 @@
|
|||||||
import os, sys, copy, torch, numpy as np
|
import os, sys, copy, torch, numpy as np
|
||||||
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
|
||||||
def print_information(information, extra_info=None, show=False):
|
def print_information(information, extra_info=None, show=False):
|
||||||
@ -29,20 +29,26 @@ def print_information(information, extra_info=None, show=False):
|
|||||||
|
|
||||||
class AANASBenchAPI(object):
|
class AANASBenchAPI(object):
|
||||||
|
|
||||||
def __init__(self, file_path_or_dict):
|
def __init__(self, file_path_or_dict, verbose=True):
|
||||||
if isinstance(file_path_or_dict, str):
|
if isinstance(file_path_or_dict, str):
|
||||||
|
if verbose: print('try to create AA-NAS-Bench api from {:}'.format(file_path_or_dict))
|
||||||
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
||||||
file_path_or_dict = torch.load(file_path_or_dict)
|
file_path_or_dict = torch.load(file_path_or_dict)
|
||||||
|
else:
|
||||||
|
file_path_or_dict = copy.deepcopy( file_path_or_dict )
|
||||||
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
||||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||||
self.arch2infos = copy.deepcopy( file_path_or_dict['arch2infos'] )
|
self.arch2infos = OrderedDict()
|
||||||
self.evaluated_indexes = sorted(list( copy.deepcopy( file_path_or_dict['evaluated_indexes'] ) ))
|
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
|
||||||
|
self.arch2infos[xkey] = ArchResults.create_from_state_dict( file_path_or_dict['arch2infos'][xkey] )
|
||||||
|
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
|
||||||
self.archstr2index = {}
|
self.archstr2index = {}
|
||||||
for idx, arch in enumerate(self.meta_archs):
|
for idx, arch in enumerate(self.meta_archs):
|
||||||
assert arch.tostr() not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch.tostr()])
|
#assert arch.tostr() not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch.tostr()])
|
||||||
self.archstr2index[ arch.tostr() ] = idx
|
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
|
||||||
|
self.archstr2index[ arch ] = idx
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
return copy.deepcopy( self.meta_archs[index] )
|
return copy.deepcopy( self.meta_archs[index] )
|
||||||
@ -54,12 +60,12 @@ class AANASBenchAPI(object):
|
|||||||
return ('{name}({num}/{total} architectures)'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs)))
|
return ('{name}({num}/{total} architectures)'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs)))
|
||||||
|
|
||||||
def query_index_by_arch(self, arch):
|
def query_index_by_arch(self, arch):
|
||||||
if arch.tostr() in self.archstr2index:
|
if isinstance(arch, str):
|
||||||
arch_index = self.archstr2index[ arch.tostr() ]
|
if arch in self.archstr2index: arch_index = self.archstr2index[ arch ]
|
||||||
#else:
|
else : arch_index = -1
|
||||||
# arch_str = Structure.str2fullstructure( arch.tostr() ).tostr()
|
elif hasattr(arch, 'tostr'):
|
||||||
# if arch_str in self.archstr2index:
|
if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ]
|
||||||
# arch_index = self.archstr2index[ arch_str ]
|
else : arch_index = -1
|
||||||
else: arch_index = -1
|
else: arch_index = -1
|
||||||
return arch_index
|
return arch_index
|
||||||
|
|
||||||
@ -80,6 +86,11 @@ class AANASBenchAPI(object):
|
|||||||
info = archInfo.query(dataname)
|
info = archInfo.query(dataname)
|
||||||
return info
|
return info
|
||||||
|
|
||||||
|
def query_meta_info_by_index(self, arch_index):
|
||||||
|
assert arch_index in self.arch2infos, 'arch_index [{:}] does not in arch2info'.format(arch_index)
|
||||||
|
archInfo = copy.deepcopy( self.arch2infos[ arch_index ] )
|
||||||
|
return archInfo
|
||||||
|
|
||||||
def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None):
|
def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None):
|
||||||
best_index, highest_accuracy = -1, None
|
best_index, highest_accuracy = -1, None
|
||||||
for i, idx in enumerate(self.evaluated_indexes):
|
for i, idx in enumerate(self.evaluated_indexes):
|
||||||
|
37
scripts-search/algos/BOHB.sh
Normal file
37
scripts-search/algos/BOHB.sh
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# bash ./scripts-search/algos/BOHB.sh -1
|
||||||
|
echo script name: $0
|
||||||
|
echo $# arguments
|
||||||
|
if [ "$#" -ne 1 ] ;then
|
||||||
|
echo "Input illegal number of parameters " $#
|
||||||
|
echo "Need 1 parameters for seed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
if [ "$TORCH_HOME" = "" ]; then
|
||||||
|
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "TORCH_HOME : $TORCH_HOME"
|
||||||
|
fi
|
||||||
|
|
||||||
|
dataset=cifar10
|
||||||
|
seed=$1
|
||||||
|
channel=16
|
||||||
|
num_cells=5
|
||||||
|
max_nodes=4
|
||||||
|
|
||||||
|
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
|
||||||
|
data_path="$TORCH_HOME/cifar.python"
|
||||||
|
else
|
||||||
|
data_path="$TORCH_HOME/cifar.python/ImageNet16"
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_dir=./output/cell-search-tiny/BOHB-${dataset}
|
||||||
|
|
||||||
|
OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \
|
||||||
|
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
|
||||||
|
--dataset ${dataset} --data_path ${data_path} \
|
||||||
|
--search_space_name aa-nas \
|
||||||
|
--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \
|
||||||
|
--n_iters 6 --num_samples 3 \
|
||||||
|
--workers 4 --print_freq 200 --rand_seed ${seed}
|
38
scripts-search/algos/R-EA.sh
Normal file
38
scripts-search/algos/R-EA.sh
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Regularized Evolution for Image Classifier Architecture Search, AAAI 2019
|
||||||
|
# bash ./scripts-search/algos/R-EA.sh -1
|
||||||
|
echo script name: $0
|
||||||
|
echo $# arguments
|
||||||
|
if [ "$#" -ne 1 ] ;then
|
||||||
|
echo "Input illegal number of parameters " $#
|
||||||
|
echo "Need 1 parameters for seed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
if [ "$TORCH_HOME" = "" ]; then
|
||||||
|
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "TORCH_HOME : $TORCH_HOME"
|
||||||
|
fi
|
||||||
|
|
||||||
|
dataset=cifar10
|
||||||
|
seed=$1
|
||||||
|
channel=16
|
||||||
|
num_cells=5
|
||||||
|
max_nodes=4
|
||||||
|
|
||||||
|
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
|
||||||
|
data_path="$TORCH_HOME/cifar.python"
|
||||||
|
else
|
||||||
|
data_path="$TORCH_HOME/cifar.python/ImageNet16"
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_dir=./output/cell-search-tiny/R-EA-${dataset}
|
||||||
|
|
||||||
|
OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \
|
||||||
|
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
|
||||||
|
--dataset ${dataset} --data_path ${data_path} \
|
||||||
|
--search_space_name aa-nas \
|
||||||
|
--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \
|
||||||
|
--ea_cycles 30 --ea_population 10 --ea_sample_size 3 --ea_fast_by_api 1 \
|
||||||
|
--workers 4 --print_freq 200 --rand_seed ${seed}
|
37
scripts-search/algos/REINFORCE.sh
Normal file
37
scripts-search/algos/REINFORCE.sh
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# bash ./scripts-search/algos/REINFORCE.sh -1
|
||||||
|
echo script name: $0
|
||||||
|
echo $# arguments
|
||||||
|
if [ "$#" -ne 1 ] ;then
|
||||||
|
echo "Input illegal number of parameters " $#
|
||||||
|
echo "Need 1 parameters for seed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
if [ "$TORCH_HOME" = "" ]; then
|
||||||
|
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "TORCH_HOME : $TORCH_HOME"
|
||||||
|
fi
|
||||||
|
|
||||||
|
dataset=cifar10
|
||||||
|
seed=$1
|
||||||
|
channel=16
|
||||||
|
num_cells=5
|
||||||
|
max_nodes=4
|
||||||
|
|
||||||
|
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
|
||||||
|
data_path="$TORCH_HOME/cifar.python"
|
||||||
|
else
|
||||||
|
data_path="$TORCH_HOME/cifar.python/ImageNet16"
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_dir=./output/cell-search-tiny/REINFORCE-${dataset}
|
||||||
|
|
||||||
|
OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \
|
||||||
|
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
|
||||||
|
--dataset ${dataset} --data_path ${data_path} \
|
||||||
|
--search_space_name aa-nas \
|
||||||
|
--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \
|
||||||
|
--learning_rate 0.001 --RL_steps 100 --EMA_momentum 0.9 \
|
||||||
|
--workers 4 --print_freq 200 --rand_seed ${seed}
|
37
scripts-search/algos/Random.sh
Normal file
37
scripts-search/algos/Random.sh
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# bash ./scripts-search/algos/Random.sh -1
|
||||||
|
echo script name: $0
|
||||||
|
echo $# arguments
|
||||||
|
if [ "$#" -ne 1 ] ;then
|
||||||
|
echo "Input illegal number of parameters " $#
|
||||||
|
echo "Need 1 parameters for seed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
if [ "$TORCH_HOME" = "" ]; then
|
||||||
|
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "TORCH_HOME : $TORCH_HOME"
|
||||||
|
fi
|
||||||
|
|
||||||
|
dataset=cifar10
|
||||||
|
seed=$1
|
||||||
|
channel=16
|
||||||
|
num_cells=5
|
||||||
|
max_nodes=4
|
||||||
|
|
||||||
|
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
|
||||||
|
data_path="$TORCH_HOME/cifar.python"
|
||||||
|
else
|
||||||
|
data_path="$TORCH_HOME/cifar.python/ImageNet16"
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_dir=./output/cell-search-tiny/RAND-${dataset}
|
||||||
|
|
||||||
|
OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \
|
||||||
|
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
|
||||||
|
--dataset ${dataset} --data_path ${data_path} \
|
||||||
|
--search_space_name aa-nas \
|
||||||
|
--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \
|
||||||
|
--random_num 100 \
|
||||||
|
--workers 4 --print_freq 200 --rand_seed ${seed}
|
Loading…
Reference in New Issue
Block a user