Update synthetic environment
This commit is contained in:
parent
275831b375
commit
78ca90459c
2
.github/workflows/basic_test.yml
vendored
2
.github/workflows/basic_test.yml
vendored
@ -54,7 +54,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
python -m pip install pytest numpy
|
python -m pip install pytest numpy
|
||||||
python -m pip install parameterized
|
python -m pip install parameterized
|
||||||
python -m pip install torch
|
python -m pip install torch torchvision
|
||||||
python --version
|
python --version
|
||||||
python -m pytest ./tests/test_synthetic.py -s
|
python -m pytest ./tests/test_synthetic.py -s
|
||||||
shell: bash
|
shell: bash
|
||||||
|
@ -1 +1 @@
|
|||||||
Subproject commit 33bfb2eb1388f0273d4cc492091b1f983340879b
|
Subproject commit f955e2ba13ae92ce5af6d28bb47d58eb6d5be249
|
@ -4,5 +4,5 @@
|
|||||||
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||||
from .SearchDatasetWrap import SearchDataset
|
from .SearchDatasetWrap import SearchDataset
|
||||||
|
|
||||||
from .synthetic_adaptive_environment import QuadraticFunction
|
from .synthetic_adaptive_environment import QuadraticFunc, CubicFunc, QuarticFunc
|
||||||
from .synthetic_adaptive_environment import SynAdaptiveEnv
|
from .synthetic_adaptive_environment import SynAdaptiveEnv
|
||||||
|
@ -2,38 +2,43 @@
|
|||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||||
#####################################################
|
#####################################################
|
||||||
import math
|
import math
|
||||||
|
import abc
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.data as data
|
import torch.utils.data as data
|
||||||
|
|
||||||
|
|
||||||
class QuadraticFunction:
|
class FitFunc(abc.ABC):
|
||||||
"""The quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
|
||||||
|
|
||||||
def __init__(self, list_of_points=None):
|
def __init__(self, freedom: int, list_of_points=None):
|
||||||
self._params = dict(a=None, b=None, c=None)
|
self._params = dict()
|
||||||
|
for i in range(freedom):
|
||||||
|
self._params[i] = None
|
||||||
|
self._freedom = freedom
|
||||||
if list_of_points is not None:
|
if list_of_points is not None:
|
||||||
self.fit(list_of_points)
|
self.fit(list_of_points)
|
||||||
|
|
||||||
def set(self, a, b, c):
|
def set(self, _params):
|
||||||
self._params["a"] = a
|
self._params = copy.deepcopy(_params)
|
||||||
self._params["b"] = b
|
|
||||||
self._params["c"] = c
|
|
||||||
|
|
||||||
def check_valid(self):
|
def check_valid(self):
|
||||||
for key, value in self._params.items():
|
for key, value in self._params.items():
|
||||||
if value is None:
|
if value is None:
|
||||||
raise ValueError("The {:} is None".format(key))
|
raise ValueError("The {:} is None".format(key))
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
def __getitem__(self, x):
|
def __getitem__(self, x):
|
||||||
self.check_valid()
|
raise NotImplementedError
|
||||||
return self._params["a"] * x * x + self._params["b"] * x + self._params["c"]
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def _getitem(self, x):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
def fit(
|
def fit(
|
||||||
self,
|
self,
|
||||||
list_of_points,
|
list_of_points,
|
||||||
transf=lambda x: x,
|
|
||||||
max_iter=900,
|
max_iter=900,
|
||||||
lr_max=1.0,
|
lr_max=1.0,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
@ -44,16 +49,24 @@ class QuadraticFunction:
|
|||||||
data.shape
|
data.shape
|
||||||
)
|
)
|
||||||
x, y = data[:, 0], data[:, 1]
|
x, y = data[:, 0], data[:, 1]
|
||||||
weights = torch.nn.Parameter(torch.Tensor(3))
|
weights = torch.nn.Parameter(torch.Tensor(self._freedom))
|
||||||
torch.nn.init.normal_(weights, mean=0.0, std=1.0)
|
torch.nn.init.normal_(weights, mean=0.0, std=1.0)
|
||||||
optimizer = torch.optim.Adam([weights], lr=lr_max, amsgrad=True)
|
optimizer = torch.optim.Adam([weights], lr=lr_max, amsgrad=True)
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(max_iter*0.25), int(max_iter*0.5), int(max_iter*0.75)], gamma=0.1)
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||||
|
optimizer,
|
||||||
|
milestones=[
|
||||||
|
int(max_iter * 0.25),
|
||||||
|
int(max_iter * 0.5),
|
||||||
|
int(max_iter * 0.75),
|
||||||
|
],
|
||||||
|
gamma=0.1,
|
||||||
|
)
|
||||||
if verbose:
|
if verbose:
|
||||||
print("The optimizer: {:}".format(optimizer))
|
print("The optimizer: {:}".format(optimizer))
|
||||||
|
|
||||||
best_loss = None
|
best_loss = None
|
||||||
for _iter in range(max_iter):
|
for _iter in range(max_iter):
|
||||||
y_hat = transf(weights[0] * x * x + weights[1] * x + weights[2])
|
y_hat = self._getitem(x, weights)
|
||||||
loss = torch.mean(torch.abs(y - y_hat))
|
loss = torch.mean(torch.abs(y - y_hat))
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
@ -61,23 +74,105 @@ class QuadraticFunction:
|
|||||||
lr_scheduler.step()
|
lr_scheduler.step()
|
||||||
if verbose:
|
if verbose:
|
||||||
print(
|
print(
|
||||||
"In QuadraticFunction's fit, loss at the {:02d}/{:02d}-th iter is {:}".format(
|
"In the fit, loss at the {:02d}/{:02d}-th iter is {:}".format(
|
||||||
_iter, max_iter, loss.item()
|
_iter, max_iter, loss.item()
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
# Update the params
|
# Update the params
|
||||||
if best_loss is None or best_loss > loss.item():
|
if best_loss is None or best_loss > loss.item():
|
||||||
best_loss = loss.item()
|
best_loss = loss.item()
|
||||||
self._params["a"] = weights[0].item()
|
for i in range(self._freedom):
|
||||||
self._params["b"] = weights[1].item()
|
self._params[i] = weights[i].item()
|
||||||
self._params["c"] = weights[2].item()
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "{name}(freedom={freedom})".format(
|
||||||
|
name=self.__class__.__name__, freedom=freedom
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class QuadraticFunc(FitFunc):
|
||||||
|
"""The quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
||||||
|
|
||||||
|
def __init__(self, list_of_points=None):
|
||||||
|
super(QuadraticFunc, self).__init__(3, list_of_points)
|
||||||
|
|
||||||
|
def __getitem__(self, x):
|
||||||
|
self.check_valid()
|
||||||
|
return self._params[0] * x * x + self._params[1] * x + self._params[2]
|
||||||
|
|
||||||
|
def _getitem(self, x, weights):
|
||||||
|
return weights[0] * x * x + weights[1] * x + weights[2]
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||||
name=self.__class__.__name__,
|
name=self.__class__.__name__,
|
||||||
a=self._params["a"],
|
a=self._params[0],
|
||||||
b=self._params["b"],
|
b=self._params[1],
|
||||||
c=self._params["c"],
|
c=self._params[2],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class CubicFunc(FitFunc):
|
||||||
|
"""The cubic function that outputs f(x) = a * x^3 + b * x^2 + c * x + d."""
|
||||||
|
|
||||||
|
def __init__(self, list_of_points=None):
|
||||||
|
super(CubicFunc, self).__init__(4, list_of_points)
|
||||||
|
|
||||||
|
def __getitem__(self, x):
|
||||||
|
self.check_valid()
|
||||||
|
return (
|
||||||
|
self._params[0] * x ** 3
|
||||||
|
+ self._params[1] * x ** 2
|
||||||
|
+ self._params[2] * x
|
||||||
|
+ self._params[3]
|
||||||
|
)
|
||||||
|
|
||||||
|
def _getitem(self, x, weights):
|
||||||
|
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "{name}(y = {a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||||
|
name=self.__class__.__name__,
|
||||||
|
a=self._params[0],
|
||||||
|
b=self._params[1],
|
||||||
|
c=self._params[2],
|
||||||
|
d=self._params[3],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class QuarticFunc(FitFunc):
|
||||||
|
"""The quartic function that outputs f(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e."""
|
||||||
|
|
||||||
|
def __init__(self, list_of_points=None):
|
||||||
|
super(QuarticFunc, self).__init__(5, list_of_points)
|
||||||
|
|
||||||
|
def __getitem__(self, x):
|
||||||
|
self.check_valid()
|
||||||
|
return (
|
||||||
|
self._params[0] * x ** 4
|
||||||
|
+ self._params[1] * x ** 3
|
||||||
|
+ self._params[2] * x ** 2
|
||||||
|
+ self._params[3] * x
|
||||||
|
+ self._params[4]
|
||||||
|
)
|
||||||
|
|
||||||
|
def _getitem(self, x, weights):
|
||||||
|
return (
|
||||||
|
weights[0] * x ** 4
|
||||||
|
+ weights[1] * x ** 3
|
||||||
|
+ weights[2] * x ** 2
|
||||||
|
+ weights[3] * x
|
||||||
|
+ weights[4]
|
||||||
|
)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "{name}(y = {a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||||
|
name=self.__class__.__name__,
|
||||||
|
a=self._params[0],
|
||||||
|
b=self._params[1],
|
||||||
|
c=self._params[2],
|
||||||
|
d=self._params[3],
|
||||||
|
e=self._params[3],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -95,28 +190,29 @@ class SynAdaptiveEnv(data.Dataset):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
num: int = 100,
|
num: int = 100,
|
||||||
num_sin_phase: int = 4,
|
num_sin_phase: int = 7,
|
||||||
min_amplitude: float = 1,
|
min_amplitude: float = 1,
|
||||||
max_amplitude: float = 4,
|
max_amplitude: float = 4,
|
||||||
phase_shift: float = 0,
|
phase_shift: float = 0,
|
||||||
mode: Optional[str] = None,
|
mode: Optional[str] = None,
|
||||||
):
|
):
|
||||||
self._amplitude_scale = QuadraticFunction(
|
self._amplitude_scale = QuadraticFunc(
|
||||||
[(0, min_amplitude), (0.5, max_amplitude), (0, min_amplitude)]
|
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
||||||
)
|
)
|
||||||
|
|
||||||
self._num_sin_phase = num_sin_phase
|
self._num_sin_phase = num_sin_phase
|
||||||
self._interval = 1.0 / (float(num) - 1)
|
self._interval = 1.0 / (float(num) - 1)
|
||||||
self._total_num = num
|
self._total_num = num
|
||||||
|
|
||||||
self._period_phase_shift = QuadraticFunction()
|
|
||||||
|
|
||||||
fitting_data = []
|
fitting_data = []
|
||||||
temp_max_scalar = 2 ** num_sin_phase
|
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
||||||
for i in range(num_sin_phase):
|
for i in range(num_sin_phase):
|
||||||
value = (2 ** i) / temp_max_scalar
|
value = (2 ** i) / temp_max_scalar
|
||||||
fitting_data.append((value, math.sin(value)))
|
next_value = (2 ** (i + 1)) / temp_max_scalar
|
||||||
self._period_phase_shift.fit(fitting_data, transf=lambda x: torch.sin(x))
|
for _phase in (0, 0.25, 0.5, 0.75):
|
||||||
|
inter_value = value + (next_value - value) * _phase
|
||||||
|
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
||||||
|
self._period_phase_shift = QuarticFunc(fitting_data)
|
||||||
|
|
||||||
# Training Set 60%
|
# Training Set 60%
|
||||||
num_of_train = int(self._total_num * 0.6)
|
num_of_train = int(self._total_num * 0.6)
|
||||||
@ -135,11 +231,6 @@ class SynAdaptiveEnv(data.Dataset):
|
|||||||
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
||||||
else:
|
else:
|
||||||
raise ValueError("Unkonwn mode of {:}".format(mode))
|
raise ValueError("Unkonwn mode of {:}".format(mode))
|
||||||
# transformation function
|
|
||||||
self._transform = None
|
|
||||||
|
|
||||||
def set_transform(self, fn):
|
|
||||||
self._transform = fn
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
self._iter_num = 0
|
self._iter_num = 0
|
||||||
@ -164,6 +255,14 @@ class SynAdaptiveEnv(data.Dataset):
|
|||||||
return len(self._indexes)
|
return len(self._indexes)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "{name}({cur_num:}/{total} elements)".format(
|
return (
|
||||||
name=self.__class__.__name__, cur_num=self._total_num, total=len(self)
|
"{name}({cur_num:}/{total} elements,\n"
|
||||||
|
"amplitude={amplitude},\n"
|
||||||
|
"period_phase_shift={period_phase_shift})".format(
|
||||||
|
name=self.__class__.__name__,
|
||||||
|
cur_num=self._total_num,
|
||||||
|
total=len(self),
|
||||||
|
amplitude=self._amplitude_scale,
|
||||||
|
period_phase_shift=self._period_phase_shift,
|
||||||
|
)
|
||||||
)
|
)
|
||||||
|
121
notebooks/TOT/synthetic-adaptive-env.ipynb
Normal file
121
notebooks/TOT/synthetic-adaptive-env.ipynb
Normal file
File diff suppressed because one or more lines are too long
263
notebooks/TOT/synthetic-env.ipynb
Normal file
263
notebooks/TOT/synthetic-env.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -13,15 +13,15 @@ print("library path: {:}".format(lib_dir))
|
|||||||
if str(lib_dir) not in sys.path:
|
if str(lib_dir) not in sys.path:
|
||||||
sys.path.insert(0, str(lib_dir))
|
sys.path.insert(0, str(lib_dir))
|
||||||
|
|
||||||
from datasets import QuadraticFunction
|
from datasets import QuadraticFunc
|
||||||
from datasets import SynAdaptiveEnv
|
from datasets import SynAdaptiveEnv
|
||||||
|
|
||||||
|
|
||||||
class TestQuadraticFunction(unittest.TestCase):
|
class TestQuadraticFunc(unittest.TestCase):
|
||||||
"""Test the quadratic function."""
|
"""Test the quadratic function."""
|
||||||
|
|
||||||
def test_simple(self):
|
def test_simple(self):
|
||||||
function = QuadraticFunction([[0, 1], [0.5, 4], [1, 1]])
|
function = QuadraticFunc([[0, 1], [0.5, 4], [1, 1]])
|
||||||
print(function)
|
print(function)
|
||||||
for x in (0, 0.5, 1):
|
for x in (0, 0.5, 1):
|
||||||
print("f({:})={:}".format(x, function[x]))
|
print("f({:})={:}".format(x, function[x]))
|
||||||
@ -31,7 +31,7 @@ class TestQuadraticFunction(unittest.TestCase):
|
|||||||
self.assertTrue(abs(function[1] - 1) < thresh)
|
self.assertTrue(abs(function[1] - 1) < thresh)
|
||||||
|
|
||||||
def test_none(self):
|
def test_none(self):
|
||||||
function = QuadraticFunction()
|
function = QuadraticFunc()
|
||||||
function.fit([[0, 1], [0.5, 4], [1, 1]], max_iter=3000, verbose=True)
|
function.fit([[0, 1], [0.5, 4], [1, 1]], max_iter=3000, verbose=True)
|
||||||
print(function)
|
print(function)
|
||||||
thresh = 0.2
|
thresh = 0.2
|
||||||
|
Loading…
Reference in New Issue
Block a user