Decouple transformers
This commit is contained in:
parent
e169aabe77
commit
7c719fce40
@ -1 +1 @@
|
|||||||
Subproject commit 358de88602b484b69756477e37084c14facafbf9
|
Subproject commit 07434da8b02e6e3706c554c5081ce35ba382d08e
|
@ -22,8 +22,6 @@ from qlib.config import C
|
|||||||
from qlib.config import REG_CN
|
from qlib.config import REG_CN
|
||||||
from qlib.utils import init_instance_by_config
|
from qlib.utils import init_instance_by_config
|
||||||
from qlib.workflow import R
|
from qlib.workflow import R
|
||||||
from qlib.utils import flatten_dict
|
|
||||||
from qlib.log import set_log_basic_config
|
|
||||||
|
|
||||||
|
|
||||||
def main(xargs):
|
def main(xargs):
|
||||||
|
@ -11,7 +11,6 @@ import pandas as pd
|
|||||||
import copy
|
import copy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from typing import Optional, Text
|
from typing import Optional, Text
|
||||||
import logging
|
|
||||||
|
|
||||||
from qlib.utils import (
|
from qlib.utils import (
|
||||||
unpack_archive_with_buffer,
|
unpack_archive_with_buffer,
|
||||||
@ -19,26 +18,25 @@ from qlib.utils import (
|
|||||||
get_or_create_path,
|
get_or_create_path,
|
||||||
drop_nan_by_y_index,
|
drop_nan_by_y_index,
|
||||||
)
|
)
|
||||||
from qlib.log import get_module_logger, TimeInspector
|
from qlib.log import get_module_logger
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
import torch.utils.data as th_data
|
import torch.utils.data as th_data
|
||||||
|
|
||||||
import layers as xlayers
|
|
||||||
from log_utils import AverageMeter
|
from log_utils import AverageMeter
|
||||||
from utils import count_parameters
|
from utils import count_parameters
|
||||||
|
from trade_models.transformers import DEFAULT_NET_CONFIG
|
||||||
|
from trade_models.transformers import get_transformer
|
||||||
|
|
||||||
|
|
||||||
from qlib.model.base import Model
|
from qlib.model.base import Model
|
||||||
from qlib.data.dataset import DatasetH
|
from qlib.data.dataset import DatasetH
|
||||||
from qlib.data.dataset.handler import DataHandlerLP
|
from qlib.data.dataset.handler import DataHandlerLP
|
||||||
|
|
||||||
|
|
||||||
default_net_config = dict(d_feat=6, embed_dim=48, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.1)
|
DEFAULT_OPT_CONFIG = dict(
|
||||||
|
|
||||||
default_opt_config = dict(
|
|
||||||
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
|
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -52,8 +50,8 @@ class QuantTransformer(Model):
|
|||||||
self.logger.info("QuantTransformer PyTorch version...")
|
self.logger.info("QuantTransformer PyTorch version...")
|
||||||
|
|
||||||
# set hyper-parameters.
|
# set hyper-parameters.
|
||||||
self.net_config = net_config or default_net_config
|
self.net_config = net_config or DEFAULT_NET_CONFIG
|
||||||
self.opt_config = opt_config or default_opt_config
|
self.opt_config = opt_config or DEFAULT_OPT_CONFIG
|
||||||
self.metric = metric
|
self.metric = metric
|
||||||
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
|
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
|
||||||
self.seed = seed
|
self.seed = seed
|
||||||
@ -81,12 +79,7 @@ class QuantTransformer(Model):
|
|||||||
torch.cuda.manual_seed(self.seed)
|
torch.cuda.manual_seed(self.seed)
|
||||||
torch.cuda.manual_seed_all(self.seed)
|
torch.cuda.manual_seed_all(self.seed)
|
||||||
|
|
||||||
self.model = TransformerModel(
|
self.model = get_transformer(self.net_config)
|
||||||
d_feat=self.net_config["d_feat"],
|
|
||||||
embed_dim=self.net_config["embed_dim"],
|
|
||||||
depth=self.net_config["depth"],
|
|
||||||
pos_drop=self.net_config["pos_drop"],
|
|
||||||
)
|
|
||||||
self.logger.info("model: {:}".format(self.model))
|
self.logger.info("model: {:}".format(self.model))
|
||||||
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
|
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
|
||||||
|
|
||||||
@ -283,178 +276,3 @@ class QuantTransformer(Model):
|
|||||||
preds.append(pred)
|
preds.append(pred)
|
||||||
|
|
||||||
return pd.Series(np.concatenate(preds), index=index)
|
return pd.Series(np.concatenate(preds), index=index)
|
||||||
|
|
||||||
|
|
||||||
# Real Model
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
|
|
||||||
super(Attention, self).__init__()
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = dim // num_heads
|
|
||||||
self.scale = qk_scale or math.sqrt(head_dim)
|
|
||||||
|
|
||||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
||||||
self.attn_drop = nn.Dropout(attn_drop)
|
|
||||||
self.proj = nn.Linear(dim, dim)
|
|
||||||
self.proj_drop = nn.Dropout(proj_drop)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
B, N, C = x.shape
|
|
||||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
||||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
|
||||||
|
|
||||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
||||||
attn = attn.softmax(dim=-1)
|
|
||||||
attn = self.attn_drop(attn)
|
|
||||||
|
|
||||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
||||||
x = self.proj(x)
|
|
||||||
x = self.proj_drop(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Block(nn.Module):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim,
|
|
||||||
num_heads,
|
|
||||||
mlp_ratio=4.0,
|
|
||||||
qkv_bias=False,
|
|
||||||
qk_scale=None,
|
|
||||||
attn_drop=0.0,
|
|
||||||
mlp_drop=0.0,
|
|
||||||
drop_path=0.0,
|
|
||||||
act_layer=nn.GELU,
|
|
||||||
norm_layer=nn.LayerNorm,
|
|
||||||
):
|
|
||||||
super(Block, self).__init__()
|
|
||||||
self.norm1 = norm_layer(dim)
|
|
||||||
self.attn = Attention(
|
|
||||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
|
|
||||||
)
|
|
||||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
||||||
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
||||||
self.norm2 = norm_layer(dim)
|
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
||||||
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
||||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class SimpleEmbed(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self, d_feat, embed_dim):
|
|
||||||
super(SimpleEmbed, self).__init__()
|
|
||||||
self.d_feat = d_feat
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.proj = nn.Linear(d_feat, embed_dim)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
|
|
||||||
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
|
||||||
out = self.proj(x) * math.sqrt(self.embed_dim)
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class TransformerModel(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
d_feat: int = 6,
|
|
||||||
embed_dim: int = 64,
|
|
||||||
depth: int = 4,
|
|
||||||
num_heads: int = 4,
|
|
||||||
mlp_ratio: float = 4.0,
|
|
||||||
qkv_bias: bool = True,
|
|
||||||
qk_scale: Optional[float] = None,
|
|
||||||
pos_drop: float = 0.0,
|
|
||||||
mlp_drop_rate: float = 0.0,
|
|
||||||
attn_drop_rate: float = 0.0,
|
|
||||||
drop_path_rate: float = 0.0,
|
|
||||||
norm_layer: Optional[nn.Module] = None,
|
|
||||||
max_seq_len: int = 65,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
d_feat (int, tuple): input image size
|
|
||||||
embed_dim (int): embedding dimension
|
|
||||||
depth (int): depth of transformer
|
|
||||||
num_heads (int): number of attention heads
|
|
||||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
||||||
qkv_bias (bool): enable bias for qkv if True
|
|
||||||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
||||||
pos_drop (float): dropout rate for the positional embedding
|
|
||||||
mlp_drop_rate (float): the dropout rate for MLP layers in a block
|
|
||||||
attn_drop_rate (float): attention dropout rate
|
|
||||||
drop_path_rate (float): stochastic depth rate
|
|
||||||
norm_layer: (nn.Module): normalization layer
|
|
||||||
"""
|
|
||||||
super(TransformerModel, self).__init__()
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
self.num_features = embed_dim
|
|
||||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
||||||
|
|
||||||
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
|
||||||
|
|
||||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
||||||
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
|
|
||||||
|
|
||||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
||||||
self.blocks = nn.ModuleList(
|
|
||||||
[
|
|
||||||
Block(
|
|
||||||
dim=embed_dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
mlp_ratio=mlp_ratio,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
qk_scale=qk_scale,
|
|
||||||
attn_drop=attn_drop_rate,
|
|
||||||
mlp_drop=mlp_drop_rate,
|
|
||||||
drop_path=dpr[i],
|
|
||||||
norm_layer=norm_layer,
|
|
||||||
)
|
|
||||||
for i in range(depth)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
self.norm = norm_layer(embed_dim)
|
|
||||||
|
|
||||||
# regression head
|
|
||||||
self.head = nn.Linear(self.num_features, 1)
|
|
||||||
|
|
||||||
xlayers.trunc_normal_(self.cls_token, std=0.02)
|
|
||||||
self.apply(self._init_weights)
|
|
||||||
|
|
||||||
def _init_weights(self, m):
|
|
||||||
if isinstance(m, nn.Linear):
|
|
||||||
xlayers.trunc_normal_(m.weight, std=0.02)
|
|
||||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
||||||
nn.init.constant_(m.bias, 0)
|
|
||||||
elif isinstance(m, nn.LayerNorm):
|
|
||||||
nn.init.constant_(m.bias, 0)
|
|
||||||
nn.init.constant_(m.weight, 1.0)
|
|
||||||
|
|
||||||
def forward_features(self, x):
|
|
||||||
batch, flatten_size = x.shape
|
|
||||||
feats = self.input_embed(x) # batch * 60 * 64
|
|
||||||
|
|
||||||
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
||||||
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
|
||||||
feats_w_tp = self.pos_embed(feats_w_ct)
|
|
||||||
|
|
||||||
xfeats = feats_w_tp
|
|
||||||
for block in self.blocks:
|
|
||||||
xfeats = block(xfeats)
|
|
||||||
|
|
||||||
xfeats = self.norm(xfeats)[:, 0]
|
|
||||||
return xfeats
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
feats = self.forward_features(x)
|
|
||||||
predicts = self.head(feats).squeeze(-1)
|
|
||||||
return predicts
|
|
||||||
|
225
lib/trade_models/transformers.py
Executable file
225
lib/trade_models/transformers.py
Executable file
@ -0,0 +1,225 @@
|
|||||||
|
##################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
|
||||||
|
##################################################
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import math
|
||||||
|
from functools import partial
|
||||||
|
from typing import Optional, Text
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
import layers as xlayers
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_NET_CONFIG = dict(
|
||||||
|
d_feat=6,
|
||||||
|
embed_dim=48,
|
||||||
|
depth=5,
|
||||||
|
num_heads=4,
|
||||||
|
mlp_ratio=4.0,
|
||||||
|
qkv_bias=True,
|
||||||
|
pos_drop=0.1,
|
||||||
|
mlp_drop_rate=0.1,
|
||||||
|
attn_drop_rate=0.1,
|
||||||
|
drop_path_rate=0.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Real Model
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
|
||||||
|
super(Attention, self).__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
self.scale = qk_scale or math.sqrt(head_dim)
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
self.proj_drop = nn.Dropout(proj_drop)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
B, N, C = x.shape
|
||||||
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||||
|
attn = attn.softmax(dim=-1)
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||||
|
x = self.proj(x)
|
||||||
|
x = self.proj_drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim,
|
||||||
|
num_heads,
|
||||||
|
mlp_ratio=4.0,
|
||||||
|
qkv_bias=False,
|
||||||
|
qk_scale=None,
|
||||||
|
attn_drop=0.0,
|
||||||
|
mlp_drop=0.0,
|
||||||
|
drop_path=0.0,
|
||||||
|
act_layer=nn.GELU,
|
||||||
|
norm_layer=nn.LayerNorm,
|
||||||
|
):
|
||||||
|
super(Block, self).__init__()
|
||||||
|
self.norm1 = norm_layer(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
|
||||||
|
)
|
||||||
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||||
|
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||||
|
self.norm2 = norm_layer(dim)
|
||||||
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
|
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||||
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SimpleEmbed(nn.Module):
|
||||||
|
def __init__(self, d_feat, embed_dim):
|
||||||
|
super(SimpleEmbed, self).__init__()
|
||||||
|
self.d_feat = d_feat
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.proj = nn.Linear(d_feat, embed_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
|
||||||
|
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
||||||
|
out = self.proj(x) * math.sqrt(self.embed_dim)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerModel(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_feat: int = 6,
|
||||||
|
embed_dim: int = 64,
|
||||||
|
depth: int = 4,
|
||||||
|
num_heads: int = 4,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
qk_scale: Optional[float] = None,
|
||||||
|
pos_drop: float = 0.0,
|
||||||
|
mlp_drop_rate: float = 0.0,
|
||||||
|
attn_drop_rate: float = 0.0,
|
||||||
|
drop_path_rate: float = 0.0,
|
||||||
|
norm_layer: Optional[nn.Module] = None,
|
||||||
|
max_seq_len: int = 65,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
d_feat (int, tuple): input image size
|
||||||
|
embed_dim (int): embedding dimension
|
||||||
|
depth (int): depth of transformer
|
||||||
|
num_heads (int): number of attention heads
|
||||||
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||||
|
qkv_bias (bool): enable bias for qkv if True
|
||||||
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
||||||
|
pos_drop (float): dropout rate for the positional embedding
|
||||||
|
mlp_drop_rate (float): the dropout rate for MLP layers in a block
|
||||||
|
attn_drop_rate (float): attention dropout rate
|
||||||
|
drop_path_rate (float): stochastic depth rate
|
||||||
|
norm_layer: (nn.Module): normalization layer
|
||||||
|
"""
|
||||||
|
super(TransformerModel, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_features = embed_dim
|
||||||
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||||
|
|
||||||
|
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
||||||
|
|
||||||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||||
|
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
|
||||||
|
|
||||||
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||||
|
self.blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
Block(
|
||||||
|
dim=embed_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_ratio=mlp_ratio,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
qk_scale=qk_scale,
|
||||||
|
attn_drop=attn_drop_rate,
|
||||||
|
mlp_drop=mlp_drop_rate,
|
||||||
|
drop_path=dpr[i],
|
||||||
|
norm_layer=norm_layer,
|
||||||
|
)
|
||||||
|
for i in range(depth)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.norm = norm_layer(embed_dim)
|
||||||
|
|
||||||
|
# regression head
|
||||||
|
self.head = nn.Linear(self.num_features, 1)
|
||||||
|
|
||||||
|
xlayers.trunc_normal_(self.cls_token, std=0.02)
|
||||||
|
self.apply(self._init_weights)
|
||||||
|
|
||||||
|
def _init_weights(self, m):
|
||||||
|
if isinstance(m, nn.Linear):
|
||||||
|
xlayers.trunc_normal_(m.weight, std=0.02)
|
||||||
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
elif isinstance(m, nn.LayerNorm):
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
nn.init.constant_(m.weight, 1.0)
|
||||||
|
|
||||||
|
def forward_features(self, x):
|
||||||
|
batch, flatten_size = x.shape
|
||||||
|
feats = self.input_embed(x) # batch * 60 * 64
|
||||||
|
|
||||||
|
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||||
|
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
||||||
|
feats_w_tp = self.pos_embed(feats_w_ct)
|
||||||
|
|
||||||
|
xfeats = feats_w_tp
|
||||||
|
for block in self.blocks:
|
||||||
|
xfeats = block(xfeats)
|
||||||
|
|
||||||
|
xfeats = self.norm(xfeats)[:, 0]
|
||||||
|
return xfeats
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
feats = self.forward_features(x)
|
||||||
|
predicts = self.head(feats).squeeze(-1)
|
||||||
|
return predicts
|
||||||
|
|
||||||
|
|
||||||
|
def get_transformer(config):
|
||||||
|
if not isinstance(config, dict):
|
||||||
|
raise ValueError("Invalid Configuration: {:}".format(config))
|
||||||
|
name = config.get("name", "basic")
|
||||||
|
if name == "basic":
|
||||||
|
model = TransformerModel(
|
||||||
|
d_feat=config.get("d_feat"),
|
||||||
|
embed_dim=config.get("embed_dim"),
|
||||||
|
depth=config.get("depth"),
|
||||||
|
num_heads=config.get("num_heads"),
|
||||||
|
mlp_ratio=config.get("mlp_ratio"),
|
||||||
|
qkv_bias=config.get("qkv_bias"),
|
||||||
|
qk_scale=config.get("qkv_scale"),
|
||||||
|
pos_drop=config.get("pos_drop"),
|
||||||
|
mlp_drop_rate=config.get("mlp_drop_rate"),
|
||||||
|
attn_drop_rate=config.get("attn_drop_rate"),
|
||||||
|
drop_path_rate=config.get("drop_path_rate"),
|
||||||
|
norm_layer=config.get("norm_layer", None),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError("Unknown model name: {:}".format(name))
|
||||||
|
return model
|
Loading…
Reference in New Issue
Block a user