Prototype generic nas model (cont.).
This commit is contained in:
		| @@ -4,6 +4,14 @@ | |||||||
| # python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 1 | # python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 1 | ||||||
| # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 | # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 | ||||||
| # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 | # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 | ||||||
|  | #### | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 1 | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 | ||||||
|  | #### | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 1 | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas | ||||||
|  | # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas | ||||||
| ###################################################################################### | ###################################################################################### | ||||||
| import os, sys, time, random, argparse | import os, sys, time, random, argparse | ||||||
| import numpy as np | import numpy as np | ||||||
| @@ -22,7 +30,7 @@ from models       import get_cell_based_tiny_net, get_search_spaces | |||||||
| from nas_201_api  import NASBench201API as API | from nas_201_api  import NASBench201API as API | ||||||
|  |  | ||||||
|  |  | ||||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger): | ||||||
|   data_time, batch_time = AverageMeter(), AverageMeter() |   data_time, batch_time = AverageMeter(), AverageMeter() | ||||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() |   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||||
| @@ -30,15 +38,26 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | |||||||
|   network.train() |   network.train() | ||||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): |   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||||
|     scheduler.update(None, 1.0 * step / len(xloader)) |     scheduler.update(None, 1.0 * step / len(xloader)) | ||||||
|  |     base_inputs = base_inputs.cuda(non_blocking=True) | ||||||
|  |     arch_inputs = arch_inputs.cuda(non_blocking=True) | ||||||
|     base_targets = base_targets.cuda(non_blocking=True) |     base_targets = base_targets.cuda(non_blocking=True) | ||||||
|     arch_targets = arch_targets.cuda(non_blocking=True) |     arch_targets = arch_targets.cuda(non_blocking=True) | ||||||
|     # measure data loading time |     # measure data loading time | ||||||
|     data_time.update(time.time() - end) |     data_time.update(time.time() - end) | ||||||
|      |      | ||||||
|     # update the weights |     # Update the weights | ||||||
|     sampled_arch = network.module.dync_genotype(True) |     if algo == 'setn': | ||||||
|     network.module.set_cal_mode('dynamic', sampled_arch) |       sampled_arch = network.dync_genotype(True) | ||||||
|     #network.module.set_cal_mode( 'urs' ) |       network.set_cal_mode('dynamic', sampled_arch) | ||||||
|  |     elif algo == 'gdas': | ||||||
|  |       network.set_cal_mode('gdas', None) | ||||||
|  |     elif algo.startswith('darts'): | ||||||
|  |       network.set_cal_mode('joint', None) | ||||||
|  |     elif algo == 'random': | ||||||
|  |       network.set_cal_mode('urs', None) | ||||||
|  |     else: | ||||||
|  |       raise ValueError('Invalid algo name : {:}'.format(algo)) | ||||||
|  |        | ||||||
|     network.zero_grad() |     network.zero_grad() | ||||||
|     _, logits = network(base_inputs) |     _, logits = network(base_inputs) | ||||||
|     base_loss = criterion(logits, base_targets) |     base_loss = criterion(logits, base_targets) | ||||||
| @@ -51,7 +70,16 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | |||||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) |     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||||
|  |  | ||||||
|     # update the architecture-weight |     # update the architecture-weight | ||||||
|     network.module.set_cal_mode( 'joint' ) |     if algo == 'setn': | ||||||
|  |       network.set_cal_mode('joint') | ||||||
|  |     elif algo == 'gdas': | ||||||
|  |       network.set_cal_mode('gdas', None) | ||||||
|  |     elif algo.startswith('darts'): | ||||||
|  |       network.set_cal_mode('joint', None) | ||||||
|  |     elif algo == 'random': | ||||||
|  |       network.set_cal_mode('urs', None) | ||||||
|  |     else: | ||||||
|  |       raise ValueError('Invalid algo name : {:}'.format(algo)) | ||||||
|     network.zero_grad() |     network.zero_grad() | ||||||
|     _, logits = network(arch_inputs) |     _, logits = network(arch_inputs) | ||||||
|     arch_loss = criterion(logits, arch_targets) |     arch_loss = criterion(logits, arch_targets) | ||||||
| @@ -73,36 +101,38 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | |||||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) |       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) |       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) |       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||||
|       #print (nn.functional.softmax(network.module.arch_parameters, dim=-1)) |  | ||||||
|       #print (network.module.arch_parameters) |  | ||||||
|   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg |   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_best_arch(xloader, network, n_samples): | def get_best_arch(xloader, network, n_samples, algo): | ||||||
|   with torch.no_grad(): |   with torch.no_grad(): | ||||||
|     network.eval() |     network.eval() | ||||||
|     archs, valid_accs = network.module.return_topK(n_samples), [] |     if algo == 'random': | ||||||
|     #print ('obtain the top-{:} architectures'.format(n_samples)) |       archs, valid_accs = network.return_topK(n_samples, True), [] | ||||||
|  |     elif algo == 'setn': | ||||||
|  |       archs, valid_accs = network.return_topK(n_samples, False), [] | ||||||
|  |     elif algo.startswith('darts') or algo == 'gdas': | ||||||
|  |       arch = network.genotype | ||||||
|  |       archs, valid_accs = [arch], [] | ||||||
|  |     else: | ||||||
|  |       raise ValueError('Invalid algorithm name : {:}'.format(algo)) | ||||||
|     loader_iter = iter(xloader) |     loader_iter = iter(xloader) | ||||||
|     for i, sampled_arch in enumerate(archs): |     for i, sampled_arch in enumerate(archs): | ||||||
|       network.module.set_cal_mode('dynamic', sampled_arch) |       network.set_cal_mode('dynamic', sampled_arch) | ||||||
|       try: |       try: | ||||||
|         inputs, targets = next(loader_iter) |         inputs, targets = next(loader_iter) | ||||||
|       except: |       except: | ||||||
|         loader_iter = iter(xloader) |         loader_iter = iter(xloader) | ||||||
|         inputs, targets = next(loader_iter) |         inputs, targets = next(loader_iter) | ||||||
|  |       _, logits = network(inputs.cuda(non_blocking=True)) | ||||||
|       _, logits = network(inputs) |  | ||||||
|       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5)) |       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5)) | ||||||
|  |  | ||||||
|       valid_accs.append(val_top1.item()) |       valid_accs.append(val_top1.item()) | ||||||
|  |  | ||||||
|     best_idx = np.argmax(valid_accs) |     best_idx = np.argmax(valid_accs) | ||||||
|     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] |     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] | ||||||
|     return best_arch, best_valid_acc |     return best_arch, best_valid_acc | ||||||
|  |  | ||||||
|  |  | ||||||
| def valid_func(xloader, network, criterion): | def valid_func(xloader, network, criterion, algo, logger): | ||||||
|   data_time, batch_time = AverageMeter(), AverageMeter() |   data_time, batch_time = AverageMeter(), AverageMeter() | ||||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() |   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||||
|   end = time.time() |   end = time.time() | ||||||
| @@ -113,7 +143,7 @@ def valid_func(xloader, network, criterion): | |||||||
|       # measure data loading time |       # measure data loading time | ||||||
|       data_time.update(time.time() - end) |       data_time.update(time.time() - end) | ||||||
|       # prediction |       # prediction | ||||||
|       _, logits = network(arch_inputs) |       _, logits = network(arch_inputs.cuda(non_blocking=True)) | ||||||
|       arch_loss = criterion(logits, arch_targets) |       arch_loss = criterion(logits, arch_targets) | ||||||
|       # record |       # record | ||||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) |       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||||
| @@ -166,7 +196,6 @@ def main(xargs): | |||||||
|   logger.log('{:} create API = {:} done'.format(time_string(), api)) |   logger.log('{:} create API = {:} done'.format(time_string(), api)) | ||||||
|  |  | ||||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') |   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||||
|   # network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() |  | ||||||
|   network, criterion = search_model.cuda(), criterion.cuda()  # use a single GPU |   network, criterion = search_model.cuda(), criterion.cuda()  # use a single GPU | ||||||
|  |  | ||||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') |   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||||
| @@ -185,7 +214,7 @@ def main(xargs): | |||||||
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) |     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) | ||||||
|   else: |   else: | ||||||
|     logger.log("=> do not find the last-info file : {:}".format(last_info)) |     logger.log("=> do not find the last-info file : {:}".format(last_info)) | ||||||
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} |     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.return_topK(1, True)[0]} | ||||||
|  |  | ||||||
|   # start training |   # start training | ||||||
|   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup |   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup | ||||||
| @@ -195,28 +224,25 @@ def main(xargs): | |||||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) |     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) |     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||||
|  |  | ||||||
|     import pdb; pdb.set_trace() |  | ||||||
|    |  | ||||||
|     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ |     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | ||||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) |                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) | ||||||
|     search_time.update(time.time() - start_time) |     search_time.update(time.time() - start_time) | ||||||
|     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) |     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | ||||||
|     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) |     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) | ||||||
|  |  | ||||||
|     genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) |     genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) | ||||||
|     network.module.set_cal_mode('dynamic', genotype) |     if xargs.algo == 'setn': | ||||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) |       network.set_cal_mode('dynamic', genotype) | ||||||
|  |     elif xargs.algo == 'gdas': | ||||||
|  |       network.set_cal_mode('gdas', None) | ||||||
|  |     elif xargs.algo.startswith('darts'): | ||||||
|  |       network.set_cal_mode('joint', None) | ||||||
|  |     elif xargs.algo == 'random': | ||||||
|  |       network.set_cal_mode('urs', None) | ||||||
|  |     else: | ||||||
|  |       raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) | ||||||
|  |     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion, xargs.algo, logger) | ||||||
|     logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) |     logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) | ||||||
|     #search_model.set_cal_mode('urs') |  | ||||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) |  | ||||||
|     #logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) |  | ||||||
|     #search_model.set_cal_mode('joint') |  | ||||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) |  | ||||||
|     #logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) |  | ||||||
|     #search_model.set_cal_mode('select') |  | ||||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) |  | ||||||
|     #logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) |  | ||||||
|     # check the best accuracy |  | ||||||
|     valid_accuracies[epoch] = valid_a_top1 |     valid_accuracies[epoch] = valid_a_top1 | ||||||
|  |  | ||||||
|     genotypes[epoch] = genotype |     genotypes[epoch] = genotype | ||||||
| @@ -245,15 +271,25 @@ def main(xargs): | |||||||
|  |  | ||||||
|   # the final post procedure : count the time |   # the final post procedure : count the time | ||||||
|   start_time = time.time() |   start_time = time.time() | ||||||
|   genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) |   genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) | ||||||
|  |   if xargs.algo == 'setn': | ||||||
|  |     network.set_cal_mode('dynamic', genotype) | ||||||
|  |   elif xargs.algo == 'gdas': | ||||||
|  |     network.set_cal_mode('gdas', None) | ||||||
|  |   elif xargs.algo.startswith('darts'): | ||||||
|  |     network.set_cal_mode('joint', None) | ||||||
|  |   elif xargs.algo == 'random': | ||||||
|  |     network.set_cal_mode('urs', None) | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) | ||||||
|   search_time.update(time.time() - start_time) |   search_time.update(time.time() - start_time) | ||||||
|   network.module.set_cal_mode('dynamic', genotype) |  | ||||||
|   valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) |   valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion, xargs.algo, logger) | ||||||
|   logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1)) |   logger.log('Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'.format(genotype, valid_a_top1)) | ||||||
|  |  | ||||||
|   logger.log('\n' + '-'*100) |   logger.log('\n' + '-'*100) | ||||||
|   # check the performance from the architecture dataset |   # check the performance from the architecture dataset | ||||||
|   logger.log('SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotype)) |   logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(xargs.algo, total_epoch, search_time.sum, genotype)) | ||||||
|   if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') )) |   if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200') )) | ||||||
|   logger.close() |   logger.close() | ||||||
|    |    | ||||||
| @@ -281,7 +317,7 @@ if __name__ == '__main__': | |||||||
|   # log |   # log | ||||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') |   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') |   parser.add_argument('--print_freq',         type=int,   default=200,  help='print frequency (default: 200)') | ||||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') |   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) |   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||||
|   | |||||||
| @@ -242,6 +242,16 @@ class PartAwareOp(nn.Module): | |||||||
|     return outputs |     return outputs | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def drop_path(x, drop_prob): | ||||||
|  |   if drop_prob > 0.: | ||||||
|  |     keep_prob = 1. - drop_prob | ||||||
|  |     mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||||
|  |     mask = mask.bernoulli_(keep_prob) | ||||||
|  |     x = torch.div(x, keep_prob) | ||||||
|  |     x.mul_(mask) | ||||||
|  |   return x | ||||||
|  |  | ||||||
|  |  | ||||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | # Searching for A Robust Neural Architecture in Four GPU Hours | ||||||
| class GDAS_Reduction_Cell(nn.Module): | class GDAS_Reduction_Cell(nn.Module): | ||||||
|  |  | ||||||
|   | |||||||
| @@ -6,7 +6,7 @@ import torch.nn as nn | |||||||
| from copy import deepcopy | from copy import deepcopy | ||||||
| from typing import Text | from typing import Text | ||||||
|  |  | ||||||
| from ..cell_operations import ResNetBasicblock | from ..cell_operations import ResNetBasicblock, drop_path | ||||||
| from .search_cells     import NAS201SearchCell as SearchCell | from .search_cells     import NAS201SearchCell as SearchCell | ||||||
| from .genotypes        import Structure | from .genotypes        import Structure | ||||||
| from .search_model_enas_utils import Controller | from .search_model_enas_utils import Controller | ||||||
| @@ -48,6 +48,7 @@ class GenericNAS201Model(nn.Module): | |||||||
|     self.dynamic_cell = None |     self.dynamic_cell = None | ||||||
|     self._tau         = None |     self._tau         = None | ||||||
|     self._algo        = None |     self._algo        = None | ||||||
|  |     self._drop_path   = None | ||||||
|  |  | ||||||
|   def set_algo(self, algo: Text): |   def set_algo(self, algo: Text): | ||||||
|     # used for searching |     # used for searching | ||||||
| @@ -62,7 +63,7 @@ class GenericNAS201Model(nn.Module): | |||||||
|      |      | ||||||
|   def set_cal_mode(self, mode, dynamic_cell=None): |   def set_cal_mode(self, mode, dynamic_cell=None): | ||||||
|     assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic'] |     assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic'] | ||||||
|     self.mode = mode |     self._mode = mode | ||||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) |     if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) | ||||||
|     else                : self.dynamic_cell = None |     else                : self.dynamic_cell = None | ||||||
|  |  | ||||||
| @@ -70,6 +71,10 @@ class GenericNAS201Model(nn.Module): | |||||||
|   def mode(self): |   def mode(self): | ||||||
|     return self._mode |     return self._mode | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def drop_path(self): | ||||||
|  |     return self._drop_path | ||||||
|  |  | ||||||
|   @property |   @property | ||||||
|   def weights(self): |   def weights(self): | ||||||
|     xlist = list(self._stem.parameters()) |     xlist = list(self._stem.parameters()) | ||||||
| @@ -100,6 +105,15 @@ class GenericNAS201Model(nn.Module): | |||||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) |       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) | ||||||
|     return string |     return string | ||||||
|  |  | ||||||
|  |   def show_alphas(self): | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       if self._algo == 'enas': | ||||||
|  |         import pdb; pdb.set_trace() | ||||||
|  |         print('-') | ||||||
|  |       else: | ||||||
|  |         return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||||
|  |            | ||||||
|  |  | ||||||
|   def extra_repr(self): |   def extra_repr(self): | ||||||
|     return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__)) |     return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||||
|  |  | ||||||
| @@ -112,7 +126,7 @@ class GenericNAS201Model(nn.Module): | |||||||
|         node_str = '{:}<-{:}'.format(i, j) |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] |           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||||
|           op_name = self.op_names[ weights.argmax().item() ] |           op_name = self._op_names[ weights.argmax().item() ] | ||||||
|         xlist.append((op_name, j)) |         xlist.append((op_name, j)) | ||||||
|       genotypes.append(tuple(xlist)) |       genotypes.append(tuple(xlist)) | ||||||
|     return Structure(genotypes) |     return Structure(genotypes) | ||||||
| @@ -126,11 +140,11 @@ class GenericNAS201Model(nn.Module): | |||||||
|       for j in range(i): |       for j in range(i): | ||||||
|         node_str = '{:}<-{:}'.format(i, j) |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|         if use_random: |         if use_random: | ||||||
|           op_name  = random.choice(self.op_names) |           op_name  = random.choice(self._op_names) | ||||||
|         else: |         else: | ||||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] |           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||||
|           op_index = torch.multinomial(weights, 1).item() |           op_index = torch.multinomial(weights, 1).item() | ||||||
|           op_name  = self.op_names[ op_index ] |           op_name  = self._op_names[ op_index ] | ||||||
|         xlist.append((op_name, j)) |         xlist.append((op_name, j)) | ||||||
|       genotypes.append(tuple(xlist)) |       genotypes.append(tuple(xlist)) | ||||||
|     return Structure(genotypes) |     return Structure(genotypes) | ||||||
| @@ -142,17 +156,20 @@ class GenericNAS201Model(nn.Module): | |||||||
|     for i, node_info in enumerate(arch.nodes): |     for i, node_info in enumerate(arch.nodes): | ||||||
|       for op, xin in node_info: |       for op, xin in node_info: | ||||||
|         node_str = '{:}<-{:}'.format(i+1, xin) |         node_str = '{:}<-{:}'.format(i+1, xin) | ||||||
|         op_index = self.op_names.index(op) |         op_index = self._op_names.index(op) | ||||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) |         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||||
|     return sum(select_logits).item() |     return sum(select_logits).item() | ||||||
|  |  | ||||||
|   def return_topK(self, K): |   def return_topK(self, K, use_random=False): | ||||||
|     archs = Structure.gen_all(self.op_names, self._max_nodes, False) |     archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] |     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||||
|     if K < 0 or K >= len(archs): K = len(archs) |     if K < 0 or K >= len(archs): K = len(archs) | ||||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) |     if use_random: | ||||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] |       return random.sample(archs, K) | ||||||
|     return return_pairs |     else: | ||||||
|  |       sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||||
|  |       return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||||
|  |       return return_pairs | ||||||
|  |  | ||||||
|   def normalize_archp(self): |   def normalize_archp(self): | ||||||
|     if self.mode == 'gdas': |     if self.mode == 'gdas': | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user