Update for Rebuttal
This commit is contained in:
		| @@ -26,6 +26,27 @@ from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   alg2name['REA'] = 'R-EA-SS3' | ||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   alg2name['RANDOM'] = 'RANDOM' | ||||
|   alg2name['BOHB'] = 'BOHB' | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     data = torch.load(path) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     alg2data[alg] = data | ||||
|   return alg2data | ||||
|  | ||||
|  | ||||
| def get_valid_test_acc(api, arch, dataset): | ||||
|   is_size_space = api.search_space_name == 'size' | ||||
|   if dataset == 'cifar10': | ||||
| @@ -52,7 +73,6 @@ def show_valid_test(api, arch): | ||||
| def find_best_valid(api, dataset): | ||||
|   all_valid_accs, all_test_accs = [], [] | ||||
|   for index, arch in enumerate(api): | ||||
|     # import pdb; pdb.set_trace() | ||||
|     valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset) | ||||
|     all_valid_accs.append((index, valid_acc)) | ||||
|     all_test_accs.append((index, test_acc)) | ||||
| @@ -68,8 +88,62 @@ def find_best_valid(api, dataset): | ||||
|   print('using test       ::: {:}'.format(perf_str)) | ||||
|  | ||||
|  | ||||
| def interplate_fn(xpair1, xpair2, x): | ||||
|   (x1, y1) = xpair1 | ||||
|   (x2, y2) = xpair2 | ||||
|   return (x2 - x) / (x2 - x1) * y1 + \ | ||||
|          (x - x1) / (x2 - x1) * y2 | ||||
|  | ||||
| def query_performance(api, info, dataset, ticket): | ||||
|   info = deepcopy(info) | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|   time_a, arch_a = time_w_arch[0] | ||||
|   time_b, arch_b = time_w_arch[1] | ||||
|  | ||||
|   v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset) | ||||
|   v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset) | ||||
|   v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket) | ||||
|   t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket) | ||||
|   # if True: | ||||
|   #   interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|   #   results.append(interplate) | ||||
|   # return sum(results) / len(results) | ||||
|   return v_acc, t_acc | ||||
|  | ||||
|  | ||||
| def show_multi_trial(search_space): | ||||
|   api = create(None, search_space, fast_mode=True, verbose=False) | ||||
|   def show(dataset): | ||||
|     print('show {:} on {:} done.'.format(dataset, search_space)) | ||||
|     xdataset, max_time = dataset.split('-T') | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|  | ||||
|       valid_accs, test_accs = [], [] | ||||
|       for _, x in data.items(): | ||||
|         v_acc, t_acc = query_performance(api, x, xdataset, float(max_time)) | ||||
|         valid_accs.append(v_acc) | ||||
|         test_accs.append(t_acc) | ||||
|       valid_str = '{:.2f}$\pm${:.2f}'.format(np.mean(valid_accs), np.std(valid_accs)) | ||||
|       test_str = '{:.2f}$\pm${:.2f}'.format(np.mean(test_accs), np.std(test_accs)) | ||||
|       print('{:} plot alg : {:10s}  | validation = {:} | test = {:}'.format(time_string(), alg, valid_str, test_str)) | ||||
|   if search_space == 'tss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000'] | ||||
|   elif search_space == 'sss': | ||||
|     datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000'] | ||||
|   else: | ||||
|     raise ValueError('Unknown search space: {:}'.format(search_space)) | ||||
|   for dataset in datasets: | ||||
|     show(dataset) | ||||
|   print('{:} complete show multi-trial results.\n'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|    | ||||
|   show_multi_trial('tss') | ||||
|   show_multi_trial('sss') | ||||
|  | ||||
|   api_tss = create(None, 'tss', fast_mode=False, verbose=False) | ||||
|   resnet = '|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|' | ||||
|   resnet_index = api_tss.query_index_by_arch(resnet) | ||||
|   | ||||
| @@ -95,7 +95,7 @@ def mutate_size_func(info): | ||||
|   return mutate_size_func | ||||
|  | ||||
|  | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, dataset): | ||||
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, use_proxy, dataset): | ||||
|   """Algorithm for regularized evolution (i.e. aging evolution). | ||||
|    | ||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||
| @@ -119,7 +119,10 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
|     model.arch = random_arch() | ||||
|     model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') | ||||
|     if use_proxy: | ||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') | ||||
|     else: | ||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp=api.full_train_epochs) | ||||
|     # Append the info | ||||
|     population.append(model) | ||||
|     history.append((model.accuracy, model.arch)) | ||||
| @@ -171,7 +174,11 @@ def main(xargs, api): | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||
|   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, | ||||
|                                                                    xargs.ea_population, | ||||
|                                                                    xargs.ea_sample_size, | ||||
|                                                                    xargs.time_budget, | ||||
|                                                                    random_arch, mutate_arch, api, xargs.use_proxy > 0, xargs.dataset) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda x: x[0])[1] | ||||
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||
| @@ -187,11 +194,13 @@ if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   # channels and number-of-cells | ||||
|   # hyperparameters for REA | ||||
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||
|   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--use_proxy',          type=int,   default=1,     help='Whether to use the proxy (H0) task or not.') | ||||
|   # | ||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||
|   # log | ||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||
| @@ -201,7 +210,8 @@ if __name__ == '__main__': | ||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|  | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), | ||||
|                                '{:}-T{:}'.format(args.dataset, args.time_budget), 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|                                '{:}-T{:}{:}'.format(args.dataset, args.time_budget, '' if args.use_proxy > 0 else '-FULL'), | ||||
|                                'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|   print('xargs : {:}'.format(args)) | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user