Updates
This commit is contained in:
		 Submodule .latent-data/qlib updated: d47e35d64e...d4aa681652
									
								
							
							
								
								
									
										64
									
								
								configs/qlib/workflow_config_naive_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										64
									
								
								configs/qlib/workflow_config_naive_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,64 @@ | ||||
| qlib_init: | ||||
|     provider_uri: "~/.qlib/qlib_data/cn_data" | ||||
|     region: cn | ||||
| market: &market all | ||||
| benchmark: &benchmark SH000300 | ||||
| data_handler_config: &data_handler_config | ||||
|     start_time: 2008-01-01 | ||||
|     end_time: 2020-08-01 | ||||
|     fit_start_time: 2008-01-01 | ||||
|     fit_end_time: 2014-12-31 | ||||
|     instruments: *market | ||||
|     infer_processors: [] | ||||
|     learn_processors: [] | ||||
|     label: ["Ref($close, -2) / Ref($close, -1) - 1"] | ||||
| port_analysis_config: &port_analysis_config | ||||
|     strategy: | ||||
|         class: TopkDropoutStrategy | ||||
|         module_path: qlib.contrib.strategy.strategy | ||||
|         kwargs: | ||||
|             topk: 50 | ||||
|             n_drop: 5 | ||||
|     backtest: | ||||
|         verbose: False | ||||
|         limit_threshold: 0.095 | ||||
|         account: 100000000 | ||||
|         benchmark: *benchmark | ||||
|         deal_price: close | ||||
|         open_cost: 0.0005 | ||||
|         close_cost: 0.0015 | ||||
|         min_cost: 5 | ||||
| task: | ||||
|     model: | ||||
|         class: NAIVE | ||||
|         module_path: trade_models.naive_model | ||||
|         kwargs: | ||||
|             d_feat: 6 | ||||
|     dataset: | ||||
|         class: DatasetH | ||||
|         module_path: qlib.data.dataset | ||||
|         kwargs: | ||||
|             handler: | ||||
|                 class: Alpha360 | ||||
|                 module_path: qlib.contrib.data.handler | ||||
|                 kwargs: *data_handler_config | ||||
|             segments: | ||||
|                 train: [2008-01-01, 2014-12-31] | ||||
|                 valid: [2015-01-01, 2016-12-31] | ||||
|                 test: [2017-01-01, 2020-08-01] | ||||
|     record:  | ||||
|         - class: SignalRecord | ||||
|           module_path: qlib.workflow.record_temp | ||||
|           kwargs: {} | ||||
|         - class: SignalMseRecord | ||||
|           module_path: qlib.contrib.workflow.record_temp | ||||
|           kwargs: {} | ||||
|         - class: SigAnaRecord | ||||
|           module_path: qlib.workflow.record_temp | ||||
|           kwargs:  | ||||
|             ana_long_short: False | ||||
|             ann_scaler: 252 | ||||
|         - class: PortAnaRecord | ||||
|           module_path: qlib.workflow.record_temp | ||||
|           kwargs:  | ||||
|             config: *port_analysis_config | ||||
| @@ -5,6 +5,7 @@ | ||||
| # python exps/trading/baselines.py --alg GRU        # | ||||
| # python exps/trading/baselines.py --alg LSTM       # | ||||
| # python exps/trading/baselines.py --alg ALSTM      # | ||||
| # python exps/trading/baselines.py --alg NAIVE      # | ||||
| #                                                   # | ||||
| # python exps/trading/baselines.py --alg SFM        # | ||||
| # python exps/trading/baselines.py --alg XGBoost    # | ||||
| @@ -52,6 +53,7 @@ def retrieve_configs(): | ||||
|     # DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and Feature Selection for Financial Data Analysis, https://arxiv.org/pdf/2010.01265.pdf | ||||
|     alg2names["DoubleE"] = "workflow_config_doubleensemble_Alpha360.yaml" | ||||
|     alg2names["TabNet"] = "workflow_config_TabNet_Alpha360.yaml" | ||||
|     alg2names["NAIVE"] = "workflow_config_naive_Alpha360.yaml" | ||||
|  | ||||
|     # find the yaml paths | ||||
|     alg2paths = OrderedDict() | ||||
|   | ||||
							
								
								
									
										99
									
								
								lib/trade_models/naive_model.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										99
									
								
								lib/trade_models/naive_model.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,99 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | ||||
| ################################################## | ||||
| # A Simple Model that reused the prices of last day | ||||
| ################################################## | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import random | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
|  | ||||
| from qlib.log import get_module_logger | ||||
|  | ||||
| from qlib.model.base import Model | ||||
| from qlib.data.dataset import DatasetH | ||||
| from qlib.data.dataset.handler import DataHandlerLP | ||||
|  | ||||
|  | ||||
| class NAIVE(Model): | ||||
|     """NAIVE Quant Model""" | ||||
|  | ||||
|     def __init__(self, d_feat=6, seed=None, **kwargs): | ||||
|         # Set logger. | ||||
|         self.logger = get_module_logger("NAIVE") | ||||
|         self.logger.info("NAIVE version...") | ||||
|  | ||||
|         # set hyper-parameters. | ||||
|         self.d_feat = d_feat | ||||
|         self.seed = seed | ||||
|  | ||||
|         self.logger.info( | ||||
|             "NAIVE parameters setting: d_feat={:}, seed={:}".format(self.d_feat, self.seed)) | ||||
|  | ||||
|         if self.seed is not None: | ||||
|             random.seed(self.seed) | ||||
|             np.random.seed(self.seed) | ||||
|  | ||||
|         self.fitted = False | ||||
|  | ||||
|     def process_data(self, features): | ||||
|         features = features.reshape(len(features), self.d_feat, -1) | ||||
|         features = features.transpose((0, 2, 1)) | ||||
|         return features[:, :59, 0] | ||||
|  | ||||
|     def mse(self, preds, labels): | ||||
|         masks = ~np.isnan(labels) | ||||
|         masked_preds = preds[masks] | ||||
|         masked_labels= labels[masks] | ||||
|         return np.square(masked_preds - masked_labels).mean() | ||||
|  | ||||
|     def model(self, x): | ||||
|         x = 1 / x - 1 | ||||
|         masks = ~np.isnan(x) | ||||
|         results = [] | ||||
|         for rowd, rowm in zip(x, masks): | ||||
|           temp = rowd[rowm] | ||||
|           if rowm.any(): | ||||
|             results.append(float(rowd[rowm][-1])) | ||||
|           else: | ||||
|             results.append(0) | ||||
|         return np.array(results, dtype=x.dtype) | ||||
|  | ||||
|     def fit( | ||||
|         self, | ||||
|         dataset: DatasetH | ||||
|     ): | ||||
|         def _prepare_dataset(df_data): | ||||
|             features = df_data["feature"].values | ||||
|             features = self.process_data(features) | ||||
|             labels = df_data["label"].values.squeeze() | ||||
|             return dict(features=features, labels=labels) | ||||
|  | ||||
|         df_train, df_valid, df_test = dataset.prepare( | ||||
|             ["train", "valid", "test"], | ||||
|             col_set=["feature", "label"], | ||||
|             data_key=DataHandlerLP.DK_L, | ||||
|         ) | ||||
|         train_dataset, valid_dataset, test_dataset = ( | ||||
|             _prepare_dataset(df_train), | ||||
|             _prepare_dataset(df_valid), | ||||
|             _prepare_dataset(df_test), | ||||
|         ) | ||||
|         # df_train['feature']['CLOSE1'].values | ||||
|         # train_dataset['features'][:, -1] | ||||
|         train_mse_loss = self.mse(self.model(train_dataset['features']), train_dataset['labels']) | ||||
|         valid_mse_loss = self.mse(self.model(valid_dataset['features']), valid_dataset['labels']) | ||||
|         self.logger.info("Training MSE loss: {:}".format(train_mse_loss)) | ||||
|         self.logger.info("Validation MSE loss: {:}".format(valid_mse_loss)) | ||||
|         self.fitted = True | ||||
|  | ||||
|     def predict(self, dataset): | ||||
|         if not self.fitted: | ||||
|             raise ValueError("The model is not fitted yet!") | ||||
|         x_test = dataset.prepare("test", col_set="feature") | ||||
|         index = x_test.index | ||||
|  | ||||
|         preds = self.model(self.process_data(x_test.values)) | ||||
|         return pd.Series(preds, index=index) | ||||
		Reference in New Issue
	
	Block a user