Try a different model / LFNA
This commit is contained in:
		| @@ -99,7 +99,7 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger): | ||||
|         future_time = timestamp.item() | ||||
|         time_seqs = [ | ||||
|             future_time - iseq * env.timestamp_interval | ||||
|             for iseq in range(args.seq_length * 2) | ||||
|             for iseq in range(args.seq_length) | ||||
|         ] | ||||
|         time_seqs.reverse() | ||||
|         with torch.no_grad(): | ||||
| @@ -107,30 +107,26 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger): | ||||
|             base_model.eval() | ||||
|             time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) | ||||
|             [seq_containers], _ = meta_model(time_seqs, None) | ||||
|             # For Debug | ||||
|             for idx in range(time_seqs.numel()): | ||||
|                 future_container = seq_containers[idx] | ||||
|                 _, (future_x, future_y) = env(time_seqs[0, idx].item()) | ||||
|             future_container = seq_containers[-1] | ||||
|             future_x, future_y = future_x.to(args.device), future_y.to(args.device) | ||||
|                 future_y_hat = base_model.forward_with_container( | ||||
|                     future_x, future_container | ||||
|                 ) | ||||
|             future_y_hat = base_model.forward_with_container(future_x, future_container) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|                 logger.log( | ||||
|                     "--> time={:.4f} -> loss={:.4f}".format( | ||||
|                         time_seqs[0, idx].item(), future_loss.item() | ||||
|                     ) | ||||
|                 ) | ||||
|             logger.log( | ||||
|                 "[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format( | ||||
|                     idx, len(env), future_loss.item() | ||||
|                 ) | ||||
|             ) | ||||
|         meta_model.adapt( | ||||
|             future_time, | ||||
|             future_x, | ||||
|             future_y, | ||||
|             env.timestamp_interval, | ||||
|             args.refine_lr, | ||||
|             args.refine_epochs, | ||||
|         ) | ||||
|         import pdb | ||||
|  | ||||
|         pdb.set_trace() | ||||
|         for iseq in range(args.seq_length): | ||||
|             time_seqs.append(future_time - iseq * eval_env.timestamp_interval) | ||||
|         print("-") | ||||
|  | ||||
|  | ||||
| @@ -156,6 +152,7 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|     meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) | ||||
|     last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     device = args.device | ||||
|     for iepoch in range(args.epochs): | ||||
|         left_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
| @@ -163,32 +160,38 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|         total_meta_v1_losses, total_meta_v2_losses, total_match_losses = [], [], [] | ||||
|         optimizer.zero_grad() | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1) | ||||
|             timestamps = meta_model.meta_timestamps[ | ||||
|                 rand_index : rand_index + xenv.seq_length | ||||
|             ] | ||||
|             meta_embeds = meta_model.super_meta_embed[ | ||||
|                 rand_index : rand_index + xenv.seq_length | ||||
|             ] | ||||
|             rand_index = random.randint(0, meta_model.meta_length - 1) | ||||
|             timestamp = meta_model.meta_timestamps[rand_index] | ||||
|             meta_embed = meta_model.super_meta_embed[rand_index] | ||||
|  | ||||
|             _, (seq_inputs, seq_targets) = xenv.seq_call(timestamps) | ||||
|             seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to( | ||||
|                 args.device | ||||
|             timestamps, [container], time_embeds = meta_model( | ||||
|                 torch.unsqueeze(timestamp, dim=0), None, True | ||||
|             ) | ||||
|             _, (inputs, targets) = xenv(timestamp.item()) | ||||
|             inputs, targets = inputs.to(device), targets.to(device) | ||||
|             # generate models one step ahead | ||||
|             [seq_containers], time_embeds = meta_model( | ||||
|                 torch.unsqueeze(timestamps, dim=0), None | ||||
|             ) | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
|             predictions = base_model.forward_with_container(inputs, container) | ||||
|             total_meta_v1_losses.append(criterion(predictions, targets)) | ||||
|             # the matching loss | ||||
|             match_loss = criterion(torch.squeeze(time_embeds, dim=0), meta_embeds) | ||||
|             match_loss = criterion(torch.squeeze(time_embeds, dim=0), meta_embed) | ||||
|             total_match_losses.append(match_loss) | ||||
|             # generate models via memory | ||||
|             [seq_containers], _ = meta_model(None, torch.unsqueeze(meta_embeds, dim=0)) | ||||
|             rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1) | ||||
|             _, [seq_containers], _ = meta_model( | ||||
|                 None, | ||||
|                 torch.unsqueeze( | ||||
|                     meta_model.super_meta_embed[ | ||||
|                         rand_index : rand_index + xenv.seq_length | ||||
|                     ], | ||||
|                     dim=0, | ||||
|                 ), | ||||
|                 False, | ||||
|             ) | ||||
|             timestamps = meta_model.meta_timestamps[ | ||||
|                 rand_index : rand_index + xenv.seq_length | ||||
|             ] | ||||
|             _, (seq_inputs, seq_targets) = xenv.seq_call(timestamps) | ||||
|             seq_inputs, seq_targets = seq_inputs.to(device), seq_targets.to(device) | ||||
|             for container, inputs, targets in zip( | ||||
|                 seq_containers, seq_inputs, seq_targets | ||||
|             ): | ||||
| @@ -250,7 +253,14 @@ def main(args): | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = train_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||
|     meta_model = LFNA_Meta( | ||||
|         shape_container, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         timestamps, | ||||
|         seq_length=args.seq_length, | ||||
|         interval=train_env.timestamp_interval, | ||||
|     ) | ||||
|     meta_model = meta_model.to(args.device) | ||||
|  | ||||
|     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||
|   | ||||
| @@ -22,7 +22,9 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         meta_timestamps, | ||||
|         mha_depth: int = 2, | ||||
|         dropout: float = 0.1, | ||||
|         thresh: float = 0.05, | ||||
|         seq_length: int = 10, | ||||
|         interval: float = None, | ||||
|         thresh: float = None, | ||||
|     ): | ||||
|         super(LFNA_Meta, self).__init__() | ||||
|         self._shape_container = shape_container | ||||
| @@ -31,7 +33,10 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         for ilayer in range(self._num_layers): | ||||
|             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||
|         self._raw_meta_timestamps = meta_timestamps | ||||
|         self._thresh = thresh | ||||
|         assert interval is not None | ||||
|         self._interval = interval | ||||
|         self._seq_length = seq_length | ||||
|         self._thresh = interval * 30 if thresh is None else thresh | ||||
|  | ||||
|         self.register_parameter( | ||||
|             "_super_layer_embed", | ||||
| @@ -42,6 +47,10 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|             torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_embedding)), | ||||
|         ) | ||||
|         self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps)) | ||||
|         # register a time difference buffer | ||||
|         time_interval = [-i * self._interval for i in range(self._seq_length)] | ||||
|         time_interval.reverse() | ||||
|         self.register_buffer("_time_interval", torch.Tensor(time_interval)) | ||||
|         self._time_embed_dim = time_embedding | ||||
|         self._append_meta_embed = dict(fixed=None, learnt=None) | ||||
|         self._append_meta_timestamps = dict(fixed=None, learnt=None) | ||||
| @@ -51,12 +60,12 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         ) | ||||
|  | ||||
|         # build transformer | ||||
|         self._trans_att = super_core.SuperQKVAttentionV2( | ||||
|             qk_att_dim=time_embedding, | ||||
|             in_v_dim=time_embedding, | ||||
|             hidden_dim=time_embedding, | ||||
|         self._trans_att = super_core.SuperQKVAttention( | ||||
|             time_embedding, | ||||
|             time_embedding, | ||||
|             time_embedding, | ||||
|             time_embedding, | ||||
|             num_heads=4, | ||||
|             proj_dim=time_embedding, | ||||
|             qkv_bias=True, | ||||
|             attn_drop=None, | ||||
|             proj_drop=dropout, | ||||
| @@ -166,12 +175,9 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         # timestamps is a batch of sequence of timestamps | ||||
|         batch, seq = timestamps.shape | ||||
|         meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed | ||||
|         # timestamp_q_embed = self._tscalar_embed(timestamps) | ||||
|         # timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1)) | ||||
|         timestamp_q_embed = self._tscalar_embed(timestamps) | ||||
|         timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1)) | ||||
|         timestamp_v_embed = meta_embeds.unsqueeze(dim=0) | ||||
|         timestamp_qk_att_embed = self._tscalar_embed( | ||||
|             torch.unsqueeze(timestamps, dim=-1) - meta_timestamps | ||||
|         ) | ||||
|         # create the mask | ||||
|         mask = ( | ||||
|             torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1) | ||||
| @@ -182,7 +188,7 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|             > self._thresh | ||||
|         ) | ||||
|         timestamp_embeds = self._trans_att( | ||||
|             timestamp_qk_att_embed, timestamp_v_embed, mask | ||||
|             timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask | ||||
|         ) | ||||
|         relative_timestamps = timestamps - timestamps[:, :1] | ||||
|         relative_pos_embeds = self._tscalar_embed(relative_timestamps) | ||||
| @@ -192,36 +198,69 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         corrected_embeds = self._meta_corrector(init_timestamp_embeds) | ||||
|         return corrected_embeds | ||||
|  | ||||
|     def forward_raw(self, timestamps, time_embed): | ||||
|         if time_embed is None: | ||||
|             batch, seq = timestamps.shape | ||||
|             time_embed = self._obtain_time_embed(timestamps) | ||||
|     def forward_raw(self, timestamps, time_embeds, get_seq_last): | ||||
|         if time_embeds is None: | ||||
|             time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1) | ||||
|             B, S = time_seq.shape | ||||
|             time_embeds = self._obtain_time_embed(time_seq) | ||||
|         else: | ||||
|             batch, seq, _ = time_embed.shape | ||||
|             time_seq = None | ||||
|             B, S, _ = time_embeds.shape | ||||
|         # create joint embed | ||||
|         num_layer, _ = self._super_layer_embed.shape | ||||
|         meta_embed = time_embed.view(batch, seq, 1, -1).expand(-1, -1, num_layer, -1) | ||||
|         layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand( | ||||
|             batch, seq, -1, -1 | ||||
|         if get_seq_last: | ||||
|             time_embeds = time_embeds[:, -1, :] | ||||
|             # The shape of `joint_embed` is batch * num-layers * input-dim | ||||
|             joint_embeds = torch.cat( | ||||
|                 ( | ||||
|                     time_embeds.view(B, 1, -1).expand(-1, num_layer, -1), | ||||
|                     self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1), | ||||
|                 ), | ||||
|                 dim=-1, | ||||
|             ) | ||||
|         joint_embed = torch.cat( | ||||
|             (meta_embed, layer_embed), dim=-1 | ||||
|         )  # batch, seq, num-layers, input-dim | ||||
|         batch_weights = self._generator( | ||||
|             joint_embed | ||||
|         )  # batch, seq, num-layers, num-weights | ||||
|         else: | ||||
|             # The shape of `joint_embed` is batch * seq * num-layers * input-dim | ||||
|             joint_embeds = torch.cat( | ||||
|                 ( | ||||
|                     time_embeds.view(B, S, 1, -1).expand(-1, -1, num_layer, -1), | ||||
|                     self._super_layer_embed.view(1, 1, num_layer, -1).expand( | ||||
|                         B, S, -1, -1 | ||||
|                     ), | ||||
|                 ), | ||||
|                 dim=-1, | ||||
|             ) | ||||
|         batch_weights = self._generator(joint_embeds) | ||||
|         batch_containers = [] | ||||
|         for seq_weights in torch.split(batch_weights, 1): | ||||
|         for weights in torch.split(batch_weights, 1): | ||||
|             if get_seq_last: | ||||
|                 batch_containers.append( | ||||
|                     self._shape_container.translate(torch.split(weights.squeeze(0), 1)) | ||||
|                 ) | ||||
|             else: | ||||
|                 seq_containers = [] | ||||
|             for weights in torch.split(seq_weights.squeeze(0), 1): | ||||
|                 weights = torch.split(weights.squeeze(0), 1) | ||||
|                 seq_containers.append(self._shape_container.translate(weights)) | ||||
|                 for ws in torch.split(weights.squeeze(0), 1): | ||||
|                     seq_containers.append( | ||||
|                         self._shape_container.translate(torch.split(ws.squeeze(0), 1)) | ||||
|                     ) | ||||
|                 batch_containers.append(seq_containers) | ||||
|         return batch_containers, time_embed | ||||
|         return time_seq, batch_containers, time_embeds | ||||
|  | ||||
|     def forward_candidate(self, input): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def adapt(self, timestamp, x, y, threshold, lr, epochs): | ||||
|         if distance + threshold * 1e-2 <= threshold: | ||||
|             return False | ||||
|         with torch.set_grad_enabled(True): | ||||
|             new_param = self.create_meta_embed() | ||||
|             optimizer = torch.optim.Adam( | ||||
|                 [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True | ||||
|             ) | ||||
|         import pdb | ||||
|  | ||||
|         pdb.set_trace() | ||||
|         print("-") | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format( | ||||
|             list(self._super_layer_embed.shape), | ||||
|   | ||||
		Reference in New Issue
	
	Block a user