Replace nats_bench by soft link
This commit is contained in:
		
							
								
								
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,6 @@ | |||||||
| [submodule ".latent-data/qlib"] | [submodule ".latent-data/qlib"] | ||||||
| 	path = .latent-data/qlib | 	path = .latent-data/qlib | ||||||
| 	url = git@github.com:D-X-Y/qlib.git | 	url = git@github.com:D-X-Y/qlib.git | ||||||
|  | [submodule ".latent-data/NATS-Bench"] | ||||||
|  | 	path = .latent-data/NATS-Bench | ||||||
|  | 	url = git@github.com:D-X-Y/NATS-Bench.git | ||||||
|   | |||||||
							
								
								
									
										1
									
								
								.latent-data/NATS-Bench
									
									
									
									
									
										Submodule
									
								
							
							
								
								
								
								
								
							
						
						
									
										1
									
								
								.latent-data/NATS-Bench
									
									
									
									
									
										Submodule
									
								
							 Submodule .latent-data/NATS-Bench added at 51187c1e91
									
								
							| @@ -94,6 +94,12 @@ Some visualization codes may require `opencv`. | |||||||
| CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. | CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. | ||||||
| Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. | Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. | ||||||
|  |  | ||||||
|  | Please use | ||||||
|  | ``` | ||||||
|  | git clone --recurse-submodules git@github.com:D-X-Y/AutoDL-Projects.git | ||||||
|  | ``` | ||||||
|  | to download this repo with submodules. | ||||||
|  |  | ||||||
| ## Citation | ## Citation | ||||||
|  |  | ||||||
| If you find that this project helps your research, please consider citing the related paper: | If you find that this project helps your research, please consider citing the related paper: | ||||||
|   | |||||||
| @@ -8,6 +8,7 @@ We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-th | |||||||
| This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment. | This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment. | ||||||
|  |  | ||||||
| **You can use `pip install nats_bench` to install the library of NATS-Bench.** | **You can use `pip install nats_bench` to install the library of NATS-Bench.** | ||||||
|  | or install from the [source codes](https://github.com/D-X-Y/NATS-Bench) via `python setup.py install`. | ||||||
|  |  | ||||||
| The structure of this Markdown file: | The structure of this Markdown file: | ||||||
| - [How to use NATS-Bench?](#How-to-Use-NATS-Bench) | - [How to use NATS-Bench?](#How-to-Use-NATS-Bench) | ||||||
|   | |||||||
| @@ -9,6 +9,11 @@ The Python files in this folder are used to re-produce the results in ``NATS-Ben | |||||||
| - [`regularized_ea.py`](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NATS-algos/regularized_ea.py) contains the REA algorithm for both search spaces. | - [`regularized_ea.py`](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NATS-algos/regularized_ea.py) contains the REA algorithm for both search spaces. | ||||||
| - [`reinforce.py`](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NATS-algos/reinforce.py) contains the REINFORCE algorithm for both search spaces. | - [`reinforce.py`](https://github.com/D-X-Y/AutoDL-Projects/blob/main/exps/NATS-algos/reinforce.py) contains the REINFORCE algorithm for both search spaces. | ||||||
|  |  | ||||||
|  | ## Requirements | ||||||
|  |  | ||||||
|  | - `nats_bench`>=v1.1 : you can use `pip install nats_bench` to install or from [sources](https://github.com/D-X-Y/NATS-Bench) | ||||||
|  | - `hpbandster` : if you want to run BOHB | ||||||
|  |  | ||||||
| ## Citation | ## Citation | ||||||
|  |  | ||||||
| If you find that this project helps your research, please consider citing the related paper: | If you find that this project helps your research, please consider citing the related paper: | ||||||
|   | |||||||
							
								
								
									
										24
									
								
								lib/layers/super_mlp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								lib/layers/super_mlp.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | |||||||
|  | import torch.nn as nn | ||||||
|  | from typing import Optional | ||||||
|  |  | ||||||
|  | class MLP(nn.Module): | ||||||
|  |   # MLP: FC -> Activation -> Drop -> FC -> Drop | ||||||
|  |   def __init__(self, in_features, hidden_features: Optional[int] = None, | ||||||
|  |                out_features: Optional[int] = None, | ||||||
|  |                act_layer=nn.GELU, | ||||||
|  |                drop: Optional[float] = None): | ||||||
|  |     super(MLP, self).__init__() | ||||||
|  |     out_features = out_features or in_features | ||||||
|  |     hidden_features = hidden_features or in_features | ||||||
|  |     self.fc1 = nn.Linear(in_features, hidden_features) | ||||||
|  |     self.act = act_layer() | ||||||
|  |     self.fc2 = nn.Linear(hidden_features, out_features) | ||||||
|  |     self.drop = nn.Dropout(drop or 0) | ||||||
|  |  | ||||||
|  |   def forward(self, x): | ||||||
|  |     x = self.fc1(x) | ||||||
|  |     x = self.act(x) | ||||||
|  |     x = self.drop(x) | ||||||
|  |     x = self.fc2(x) | ||||||
|  |     x = self.drop(x) | ||||||
|  |     return x | ||||||
							
								
								
									
										7
									
								
								lib/layers/super_module.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								lib/layers/super_module.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,7 @@ | |||||||
|  | import torch.nn as nn | ||||||
|  |  | ||||||
|  | class SuperModule(nn.Module): | ||||||
|  |   def __init__(self): | ||||||
|  |     super(SuperModule, self).__init__() | ||||||
|  |  | ||||||
|  |    | ||||||
| @@ -1,70 +0,0 @@ | |||||||
| ############################################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ########################## |  | ||||||
| ############################################################################## |  | ||||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # |  | ||||||
| ############################################################################## |  | ||||||
| """The official Application Programming Interface (API) for NATS-Bench.""" |  | ||||||
| from nats_bench.api_size import NATSsize |  | ||||||
| from nats_bench.api_topology import NATStopology |  | ||||||
| from nats_bench.api_utils import ArchResults |  | ||||||
| from nats_bench.api_utils import pickle_load |  | ||||||
| from nats_bench.api_utils import pickle_save |  | ||||||
| from nats_bench.api_utils import ResultsCount |  | ||||||
|  |  | ||||||
|  |  | ||||||
| NATS_BENCH_API_VERSIONs = ['v1.0',    # [2020.08.31] |  | ||||||
|                            'v1.1']    # [2020.12.20] adding unit tests |  | ||||||
| NATS_BENCH_SSS_NAMEs = ('sss', 'size') |  | ||||||
| NATS_BENCH_TSS_NAMEs = ('tss', 'topology') |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def version(): |  | ||||||
|   return NATS_BENCH_API_VERSIONs[-1] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def create(file_path_or_dict, search_space, fast_mode=False, verbose=True): |  | ||||||
|   """Create the instead for NATS API. |  | ||||||
|  |  | ||||||
|   Args: |  | ||||||
|     file_path_or_dict: None or a file path or a directory path. |  | ||||||
|     search_space: This is a string indicates the search space in NATS-Bench. |  | ||||||
|     fast_mode: If True, we will not load all the data at initialization, |  | ||||||
|       instead, the data for each candidate architecture will be loaded when |  | ||||||
|       quering it; If False, we will load all the data during initialization. |  | ||||||
|     verbose: This is a flag to indicate whether log additional information. |  | ||||||
|  |  | ||||||
|   Raises: |  | ||||||
|     ValueError: If not find the matched serach space description. |  | ||||||
|  |  | ||||||
|   Returns: |  | ||||||
|     The created NATS-Bench API. |  | ||||||
|   """ |  | ||||||
|   if search_space in NATS_BENCH_TSS_NAMEs: |  | ||||||
|     return NATStopology(file_path_or_dict, fast_mode, verbose) |  | ||||||
|   elif search_space in NATS_BENCH_SSS_NAMEs: |  | ||||||
|     return NATSsize(file_path_or_dict, fast_mode, verbose) |  | ||||||
|   else: |  | ||||||
|     raise ValueError('invalid search space : {:}'.format(search_space)) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def search_space_info(main_tag, aux_tag): |  | ||||||
|   """Obtain the search space information.""" |  | ||||||
|   nats_sss = dict(candidates=[8, 16, 24, 32, 40, 48, 56, 64], |  | ||||||
|                   num_layers=5) |  | ||||||
|   nats_tss = dict(op_names=['none', 'skip_connect', |  | ||||||
|                             'nor_conv_1x1', 'nor_conv_3x3', |  | ||||||
|                             'avg_pool_3x3'], |  | ||||||
|                   num_nodes=4) |  | ||||||
|   if main_tag == 'nats-bench': |  | ||||||
|     if aux_tag in NATS_BENCH_SSS_NAMEs: |  | ||||||
|       return nats_sss |  | ||||||
|     elif aux_tag in NATS_BENCH_TSS_NAMEs: |  | ||||||
|       return nats_tss |  | ||||||
|     else: |  | ||||||
|       raise ValueError('Unknown auxiliary tag: {:}'.format(aux_tag)) |  | ||||||
|   elif main_tag == 'nas-bench-201': |  | ||||||
|     if aux_tag is not None: |  | ||||||
|       raise ValueError('For NAS-Bench-201, the auxiliary tag should be None.') |  | ||||||
|     return nats_tss |  | ||||||
|   else: |  | ||||||
|     raise ValueError('Unknown main tag: {:}'.format(main_tag)) |  | ||||||
| @@ -1,291 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 # |  | ||||||
| ############################################################################## |  | ||||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # |  | ||||||
| ############################################################################## |  | ||||||
| # The history of benchmark files are as follows,                             # |  | ||||||
| # where the format is (the name is NATS-sss-[version]-[md5].pickle.pbz2)     # |  | ||||||
| # [2020.08.31] NATS-sss-v1_0-50262.pickle.pbz2                               # |  | ||||||
| ############################################################################## |  | ||||||
| # pylint: disable=line-too-long |  | ||||||
| """The API for size search space in NATS-Bench.""" |  | ||||||
| import collections |  | ||||||
| import copy |  | ||||||
| import os |  | ||||||
| import random |  | ||||||
| from typing import Dict, Optional, Text, Union, Any |  | ||||||
|  |  | ||||||
| from nats_bench.api_utils import ArchResults |  | ||||||
| from nats_bench.api_utils import NASBenchMetaAPI |  | ||||||
| from nats_bench.api_utils import get_torch_home |  | ||||||
| from nats_bench.api_utils import nats_is_dir |  | ||||||
| from nats_bench.api_utils import nats_is_file |  | ||||||
| from nats_bench.api_utils import PICKLE_EXT |  | ||||||
| from nats_bench.api_utils import pickle_load |  | ||||||
| from nats_bench.api_utils import time_string |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ALL_BASE_NAMES = ['NATS-sss-v1_0-50262'] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def print_information(information, extra_info=None, show=False): |  | ||||||
|   """print out the information of a given ArchResults.""" |  | ||||||
|   dataset_names = information.get_dataset_names() |  | ||||||
|   strings = [ |  | ||||||
|       information.arch_str, |  | ||||||
|       'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info) |  | ||||||
|   ] |  | ||||||
|  |  | ||||||
|   def metric2str(loss, acc): |  | ||||||
|     return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc) |  | ||||||
|  |  | ||||||
|   for dataset in dataset_names: |  | ||||||
|     metric = information.get_compute_costs(dataset) |  | ||||||
|     flop, param, latency = metric['flops'], metric['params'], metric['latency'] |  | ||||||
|     str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format( |  | ||||||
|         dataset, flop, param, |  | ||||||
|         '{:.2f}'.format(latency * |  | ||||||
|                         1000) if latency is not None and latency > 0 else None) |  | ||||||
|     train_info = information.get_metrics(dataset, 'train') |  | ||||||
|     if dataset == 'cifar10-valid': |  | ||||||
|       valid_info = information.get_metrics(dataset, 'x-valid') |  | ||||||
|       test__info = information.get_metrics(dataset, 'ori-test') |  | ||||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(valid_info['loss'], valid_info['accuracy']), |  | ||||||
|           metric2str(test__info['loss'], test__info['accuracy'])) |  | ||||||
|     elif dataset == 'cifar10': |  | ||||||
|       test__info = information.get_metrics(dataset, 'ori-test') |  | ||||||
|       str2 = '{:14s} train : [{:}], test  : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(test__info['loss'], test__info['accuracy'])) |  | ||||||
|     else: |  | ||||||
|       valid_info = information.get_metrics(dataset, 'x-valid') |  | ||||||
|       test__info = information.get_metrics(dataset, 'x-test') |  | ||||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(valid_info['loss'], valid_info['accuracy']), |  | ||||||
|           metric2str(test__info['loss'], test__info['accuracy'])) |  | ||||||
|     strings += [str1, str2] |  | ||||||
|   if show: print('\n'.join(strings)) |  | ||||||
|   return strings |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class NATSsize(NASBenchMetaAPI): |  | ||||||
|   """This is the class for the API of size search space in NATS-Bench.""" |  | ||||||
|  |  | ||||||
|   def __init__(self, |  | ||||||
|                file_path_or_dict: Optional[Union[Text, Dict[Text, Any]]] = None, |  | ||||||
|                fast_mode: bool = False, |  | ||||||
|                verbose: bool = True): |  | ||||||
|     """The initialization function that takes the dataset file path (or a dict loaded from that path) as input.""" |  | ||||||
|     self._all_base_names = ALL_BASE_NAMES |  | ||||||
|     self.filename = None |  | ||||||
|     self._search_space_name = 'size' |  | ||||||
|     self._fast_mode = fast_mode |  | ||||||
|     self._archive_dir = None |  | ||||||
|     self._full_train_epochs = 90 |  | ||||||
|     self.reset_time() |  | ||||||
|     if file_path_or_dict is None: |  | ||||||
|       if self._fast_mode: |  | ||||||
|         self._archive_dir = os.path.join( |  | ||||||
|             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) |  | ||||||
|       else: |  | ||||||
|         file_path_or_dict = os.path.join( |  | ||||||
|             get_torch_home(), '{:}.{:}'.format( |  | ||||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) |  | ||||||
|       print('{:} Try to use the default NATS-Bench (size) path from ' |  | ||||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, |  | ||||||
|                                                  file_path_or_dict)) |  | ||||||
|     if isinstance(file_path_or_dict, str): |  | ||||||
|       file_path_or_dict = str(file_path_or_dict) |  | ||||||
|       if verbose: |  | ||||||
|         print('{:} Try to create the NATS-Bench (size) api ' |  | ||||||
|               'from {:} with fast_mode={:}'.format( |  | ||||||
|                   time_string(), file_path_or_dict, fast_mode)) |  | ||||||
|       if not nats_is_file(file_path_or_dict) and not nats_is_dir( |  | ||||||
|           file_path_or_dict): |  | ||||||
|         raise ValueError('{:} is neither a file or a dir.'.format( |  | ||||||
|             file_path_or_dict)) |  | ||||||
|       self.filename = os.path.basename(file_path_or_dict) |  | ||||||
|       if fast_mode: |  | ||||||
|         if nats_is_file(file_path_or_dict): |  | ||||||
|           raise ValueError('fast_mode={:} must feed the path for directory ' |  | ||||||
|                            ': {:}'.format(fast_mode, file_path_or_dict)) |  | ||||||
|         else: |  | ||||||
|           self._archive_dir = file_path_or_dict |  | ||||||
|       else: |  | ||||||
|         if nats_is_dir(file_path_or_dict): |  | ||||||
|           raise ValueError('fast_mode={:} must feed the path for file ' |  | ||||||
|                            ': {:}'.format(fast_mode, file_path_or_dict)) |  | ||||||
|         else: |  | ||||||
|           file_path_or_dict = pickle_load(file_path_or_dict) |  | ||||||
|     elif isinstance(file_path_or_dict, dict): |  | ||||||
|       file_path_or_dict = copy.deepcopy(file_path_or_dict) |  | ||||||
|     self.verbose = verbose |  | ||||||
|     if isinstance(file_path_or_dict, dict): |  | ||||||
|       keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') |  | ||||||
|       for key in keys: |  | ||||||
|         if key not in file_path_or_dict: |  | ||||||
|           raise ValueError('Can not find key[{:}] in the dict'.format(key)) |  | ||||||
|       self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs']) |  | ||||||
|       # NOTE(xuanyidong): This is a dict mapping each architecture to a dict, |  | ||||||
|       # where the key is #epochs and the value is ArchResults |  | ||||||
|       self.arch2infos_dict = collections.OrderedDict() |  | ||||||
|       self._avaliable_hps = set() |  | ||||||
|       for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): |  | ||||||
|         all_infos = file_path_or_dict['arch2infos'][xkey] |  | ||||||
|         hp2archres = collections.OrderedDict() |  | ||||||
|         for hp_key, results in all_infos.items(): |  | ||||||
|           hp2archres[hp_key] = ArchResults.create_from_state_dict(results) |  | ||||||
|           self._avaliable_hps.add(hp_key)  # save the avaliable hyper-parameter |  | ||||||
|         self.arch2infos_dict[xkey] = hp2archres |  | ||||||
|       self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes']) |  | ||||||
|     elif self.archive_dir is not None: |  | ||||||
|       benchmark_meta = pickle_load('{:}/meta.{:}'.format( |  | ||||||
|           self.archive_dir, PICKLE_EXT)) |  | ||||||
|       self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs']) |  | ||||||
|       self.arch2infos_dict = collections.OrderedDict() |  | ||||||
|       self._avaliable_hps = set() |  | ||||||
|       self.evaluated_indexes = set() |  | ||||||
|     else: |  | ||||||
|       raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir ' |  | ||||||
|                        'must be set'.format(type(file_path_or_dict))) |  | ||||||
|     self.archstr2index = {} |  | ||||||
|     for idx, arch in enumerate(self.meta_archs): |  | ||||||
|       if arch in self.archstr2index: |  | ||||||
|         raise ValueError('This [{:}]-th arch {:} already in the ' |  | ||||||
|                          'dict ({:}).'.format( |  | ||||||
|                              idx, arch, self.archstr2index[arch])) |  | ||||||
|       self.archstr2index[arch] = idx |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Create NATS-Bench (size) done with {:}/{:} architectures ' |  | ||||||
|             'avaliable.'.format(time_string(), |  | ||||||
|                                 len(self.evaluated_indexes), |  | ||||||
|                                 len(self.meta_archs))) |  | ||||||
|  |  | ||||||
|   def query_info_str_by_arch(self, arch, hp: Text = '12'): |  | ||||||
|     """Query the information of a specific architecture. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|       arch: it can be an architecture index or an architecture string. |  | ||||||
|  |  | ||||||
|       hp: the hyperparamete indicator, could be 01, 12, or 90. The difference |  | ||||||
|           between these three configurations are the number of training epochs. |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|       ArchResults instance |  | ||||||
|     """ |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Call query_info_str_by_arch with arch={:}' |  | ||||||
|             'and hp={:}'.format(time_string(), arch, hp)) |  | ||||||
|     return self._query_info_str_by_arch(arch, hp, print_information) |  | ||||||
|  |  | ||||||
|   def get_more_info(self, |  | ||||||
|                     index, |  | ||||||
|                     dataset, |  | ||||||
|                     iepoch=None, |  | ||||||
|                     hp: Text = '12', |  | ||||||
|                     is_random: bool = True): |  | ||||||
|     """Return the metric for the `index`-th architecture. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|       index: the architecture index. |  | ||||||
|       dataset: |  | ||||||
|           'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set |  | ||||||
|           'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set |  | ||||||
|           'cifar100'       : using the proposed train set of CIFAR-100 as the training set |  | ||||||
|           'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set |  | ||||||
|       iepoch: the index of training epochs from 0 to 11/199. |  | ||||||
|           When iepoch=None, it will return the metric for the last training epoch |  | ||||||
|           When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) |  | ||||||
|       hp: indicates different hyper-parameters for training |  | ||||||
|           When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs |  | ||||||
|           When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs |  | ||||||
|           When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs |  | ||||||
|       is_random: |  | ||||||
|           When is_random=True, the performance of a random architecture will be returned |  | ||||||
|           When is_random=False, the performanceo of all trials will be averaged. |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|       a dict, where key is the metric name and value is its value. |  | ||||||
|     """ |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Call the get_more_info function with index={:}, dataset={:}, ' |  | ||||||
|             'iepoch={:}, hp={:}, and is_random={:}.'.format( |  | ||||||
|                 time_string(), index, dataset, iepoch, hp, is_random)) |  | ||||||
|     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object |  | ||||||
|     self._prepare_info(index) |  | ||||||
|     if index not in self.arch2infos_dict: |  | ||||||
|       raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) |  | ||||||
|     archresult = self.arch2infos_dict[index][str(hp)] |  | ||||||
|     # if randomly select one trial, select the seed at first |  | ||||||
|     if isinstance(is_random, bool) and is_random: |  | ||||||
|       seeds = archresult.get_dataset_seeds(dataset) |  | ||||||
|       is_random = random.choice(seeds) |  | ||||||
|     # collect the training information |  | ||||||
|     train_info = archresult.get_metrics( |  | ||||||
|         dataset, 'train', iepoch=iepoch, is_random=is_random) |  | ||||||
|     total = train_info['iepoch'] + 1 |  | ||||||
|     xinfo = { |  | ||||||
|         'train-loss': train_info['loss'], |  | ||||||
|         'train-accuracy': train_info['accuracy'], |  | ||||||
|         'train-per-time': train_info['all_time'] / total, |  | ||||||
|         'train-all-time': train_info['all_time'] |  | ||||||
|     } |  | ||||||
|     # collect the evaluation information |  | ||||||
|     if dataset == 'cifar10-valid': |  | ||||||
|       valid_info = archresult.get_metrics( |  | ||||||
|           dataset, 'x-valid', iepoch=iepoch, is_random=is_random) |  | ||||||
|       try: |  | ||||||
|         test_info = archresult.get_metrics( |  | ||||||
|             dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         test_info = None |  | ||||||
|       valtest_info = None |  | ||||||
|       xinfo['comment'] = 'In this dict, train-loss/accuracy/time is the metric on the train set of CIFAR-10. The test-loss/accuracy/time is the performance of the CIFAR-10 test set after training on the train set by {:} epochs. The per-time and total-time indicate the per epoch and total time costs, respectively.'.format(hp) |  | ||||||
|     else: |  | ||||||
|       if dataset == 'cifar10': |  | ||||||
|         xinfo['comment'] = 'In this dict, train-loss/accuracy/time is the metric on the train+valid sets of CIFAR-10. The test-loss/accuracy/time is the performance of the CIFAR-10 test set after training on the train+valid sets by {:} epochs. The per-time and total-time indicate the per epoch and total time costs, respectively.'.format(hp) |  | ||||||
|       try:  # collect results on the proposed test set |  | ||||||
|         if dataset == 'cifar10': |  | ||||||
|           test_info = archresult.get_metrics( |  | ||||||
|               dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|         else: |  | ||||||
|           test_info = archresult.get_metrics( |  | ||||||
|               dataset, 'x-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         test_info = None |  | ||||||
|       try:  # collect results on the proposed validation set |  | ||||||
|         valid_info = archresult.get_metrics( |  | ||||||
|             dataset, 'x-valid', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         valid_info = None |  | ||||||
|       try: |  | ||||||
|         if dataset != 'cifar10': |  | ||||||
|           valtest_info = archresult.get_metrics( |  | ||||||
|               dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|         else: |  | ||||||
|           valtest_info = None |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         valtest_info = None |  | ||||||
|     if valid_info is not None: |  | ||||||
|       xinfo['valid-loss'] = valid_info['loss'] |  | ||||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] |  | ||||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total |  | ||||||
|       xinfo['valid-all-time'] = valid_info['all_time'] |  | ||||||
|     if test_info is not None: |  | ||||||
|       xinfo['test-loss'] = test_info['loss'] |  | ||||||
|       xinfo['test-accuracy'] = test_info['accuracy'] |  | ||||||
|       xinfo['test-per-time'] = test_info['all_time'] / total |  | ||||||
|       xinfo['test-all-time'] = test_info['all_time'] |  | ||||||
|     if valtest_info is not None: |  | ||||||
|       xinfo['valtest-loss'] = valtest_info['loss'] |  | ||||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] |  | ||||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total |  | ||||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] |  | ||||||
|     return xinfo |  | ||||||
|  |  | ||||||
|   def show(self, index: int = -1) -> None: |  | ||||||
|     """Print the information of a specific (or all) architecture(s).""" |  | ||||||
|     self._show(index, print_information) |  | ||||||
| @@ -1,131 +0,0 @@ | |||||||
| ############################################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ########################## |  | ||||||
| ############################################################################## |  | ||||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # |  | ||||||
| ############################################################################## |  | ||||||
| # pytest --capture=tee-sys                                                   # |  | ||||||
| ############################################################################## |  | ||||||
| """This file is used to quickly test the API.""" |  | ||||||
| import os |  | ||||||
| import pytest |  | ||||||
| import random |  | ||||||
|  |  | ||||||
| from nats_bench.api_size import NATSsize |  | ||||||
| from nats_bench.api_size import ALL_BASE_NAMES as sss_base_names |  | ||||||
| from nats_bench.api_topology import NATStopology |  | ||||||
| from nats_bench.api_topology import ALL_BASE_NAMES as tss_base_names |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_fake_torch_home_dir(): |  | ||||||
|   print('This file is {:}'.format(os.path.abspath(__file__))) |  | ||||||
|   print('The current directory is {:}'.format(os.path.abspath(os.getcwd()))) |  | ||||||
|   xname = 'FAKE_TORCH_HOME' |  | ||||||
|   if xname in os.environ: |  | ||||||
|     return os.environ['FAKE_TORCH_HOME'] |  | ||||||
|   else: |  | ||||||
|     return os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'fake_torch_dir') |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TestNATSBench(object): |  | ||||||
|  |  | ||||||
|   def test_nats_bench_tss(self, benchmark_dir=None, fake_random=True): |  | ||||||
|     if benchmark_dir is None: |  | ||||||
|       benchmark_dir = os.path.join(get_fake_torch_home_dir(), sss_base_names[-1] + '-simple') |  | ||||||
|     return _test_nats_bench(benchmark_dir, True, fake_random) |  | ||||||
|  |  | ||||||
|   def test_nats_bench_sss(self, benchmark_dir=None, fake_random=True): |  | ||||||
|     if benchmark_dir is None: |  | ||||||
|       benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple') |  | ||||||
|     return _test_nats_bench(benchmark_dir, False, fake_random) |  | ||||||
|  |  | ||||||
|   def prepare_fake_tss(self): |  | ||||||
|     print('') |  | ||||||
|     tss_benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple') |  | ||||||
|     api = NATStopology(tss_benchmark_dir, True, False) |  | ||||||
|     return api |  | ||||||
|  |  | ||||||
|   def test_01_th_issue(self): |  | ||||||
|     # Link: https://github.com/D-X-Y/NATS-Bench/issues/1 |  | ||||||
|     api = self.prepare_fake_tss() |  | ||||||
|     # The performance of 0-th architecture on CIFAR-10 (trained by 12 epochs) |  | ||||||
|     info = api.get_more_info(0, 'cifar10', hp=12) |  | ||||||
|     # First of all, the data split in NATS-Bench is different from that in the official CIFAR paper. |  | ||||||
|     # In NATS-Bench, we split the original CIFAR-10 training set into two parts, i.e., a training set and a validation set. |  | ||||||
|     # In the following, we will use the splits of NATS-Bench to explain. |  | ||||||
|     print(info['comment']) |  | ||||||
|     print('The loss on the training + validation sets of CIFAR-10: {:}'.format(info['train-loss'])) |  | ||||||
|     print('The total training time for 12 epochs on the training + validation sets of CIFAR-10: {:}'.format(info['train-all-time'])) |  | ||||||
|     print('The per-epoch training time on CIFAR-10: {:}'.format(info['train-per-time'])) |  | ||||||
|     print('The total evaluation time on the test set of CIFAR-10 for 12 times: {:}'.format(info['test-all-time'])) |  | ||||||
|     print('The evaluation time on the test set of CIFAR-10: {:}'.format(info['test-per-time'])) |  | ||||||
|     cost_info = api.get_cost_info(0, 'cifar10') |  | ||||||
|     xkeys = ['T-train@epoch',     # The per epoch training time on the training + validation sets of CIFAR-10. |  | ||||||
|              'T-train@total', |  | ||||||
|              'T-ori-test@epoch',  # The time cost for the evaluation on CIFAR-10 test set. |  | ||||||
|              'T-ori-test@total']  # T-ori-test@epoch * 12 times. |  | ||||||
|     for xkey in xkeys: |  | ||||||
|       print('The cost info [{:}] for 0-th architecture on CIFAR-10 is {:}'.format(xkey, cost_info[xkey])) |  | ||||||
|      |  | ||||||
|   def test_02_th_issue(self): |  | ||||||
|     # https://github.com/D-X-Y/NATS-Bench/issues/2 |  | ||||||
|     api = self.prepare_fake_tss() |  | ||||||
|     data = api.query_by_index(284, dataname='cifar10', hp=200) |  | ||||||
|     for xkey, xvalue in data.items(): |  | ||||||
|       print('{:} : {:}'.format(xkey, xvalue)) |  | ||||||
|     xinfo = data[777].get_train() |  | ||||||
|     print(xinfo) |  | ||||||
|     print(data[777].train_acc1es) |  | ||||||
|  |  | ||||||
|     info_012_epochs = api.get_more_info(284, 'cifar10', hp= 12) |  | ||||||
|     print('Train accuracy for  12 epochs is {:}'.format(info_012_epochs['train-accuracy'])) |  | ||||||
|     info_200_epochs = api.get_more_info(284, 'cifar10', hp=200) |  | ||||||
|     print('Train accuracy for 200 epochs is {:}'.format(info_200_epochs['train-accuracy'])) |  | ||||||
|   |  | ||||||
|  |  | ||||||
| def _test_nats_bench(benchmark_dir, is_tss, fake_random, verbose=False): |  | ||||||
|   """The main test entry for NATS-Bench.""" |  | ||||||
|   if is_tss: |  | ||||||
|     api = NATStopology(benchmark_dir, True, verbose) |  | ||||||
|   else: |  | ||||||
|     api = NATSsize(benchmark_dir, True, verbose) |  | ||||||
|  |  | ||||||
|   if fake_random: |  | ||||||
|     test_indexes = [0, 11, 284] |  | ||||||
|   else: |  | ||||||
|     test_indexes = [random.randint(0, len(api) - 1) for _ in range(10)] |  | ||||||
|  |  | ||||||
|   key2dataset = {'cifar10': 'CIFAR-10', |  | ||||||
|                  'cifar100': 'CIFAR-100', |  | ||||||
|                  'ImageNet16-120': 'ImageNet16-120'} |  | ||||||
|  |  | ||||||
|   for index in test_indexes: |  | ||||||
|     print('\n\nEvaluate the {:5d}-th architecture.'.format(index)) |  | ||||||
|  |  | ||||||
|     for key, dataset in key2dataset.items(): |  | ||||||
|       # Query the loss / accuracy / time for the `index`-th candidate |  | ||||||
|       #   architecture on CIFAR-10 |  | ||||||
|       # info is a dict, where you can easily figure out the meaning by key |  | ||||||
|       info = api.get_more_info(index, key) |  | ||||||
|       print('  -->> The performance on {:}: {:}'.format(dataset, info)) |  | ||||||
|  |  | ||||||
|       # Query the flops, params, latency. info is a dict. |  | ||||||
|       info = api.get_cost_info(index, key) |  | ||||||
|       print('  -->> The cost info on {:}: {:}'.format(dataset, info)) |  | ||||||
|  |  | ||||||
|       # Simulate the training of the `index`-th candidate: |  | ||||||
|       validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval( |  | ||||||
|           index, dataset=key, hp='12') |  | ||||||
|       print('  -->> The validation accuracy={:}, latency={:}, ' |  | ||||||
|             'the current time cost={:} s, accumulated time cost={:} s' |  | ||||||
|             .format(validation_accuracy, latency, time_cost, |  | ||||||
|                     current_total_time_cost)) |  | ||||||
|  |  | ||||||
|       # Print the configuration of the `index`-th architecture on CIFAR-10 |  | ||||||
|       config = api.get_net_config(index, key) |  | ||||||
|       print('  -->> The configuration on {:} is {:}'.format(dataset, config)) |  | ||||||
|  |  | ||||||
|     # Show the information of the `index`-th architecture |  | ||||||
|     api.show(index) |  | ||||||
|  |  | ||||||
|   with pytest.raises(ValueError): |  | ||||||
|     api.get_more_info(100000, 'cifar10') |  | ||||||
| @@ -1,338 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 # |  | ||||||
| ############################################################################## |  | ||||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # |  | ||||||
| ############################################################################## |  | ||||||
| # The history of benchmark files are as follows,                             # |  | ||||||
| # where the format is (the name is NATS-tss-[version]-[md5].pickle.pbz2)     # |  | ||||||
| # [2020.08.31] NATS-tss-v1_0-3ffb9.pickle.pbz2                               # |  | ||||||
| ############################################################################## |  | ||||||
| # pylint: disable=line-too-long |  | ||||||
| """The API for topology search space in NATS-Bench.""" |  | ||||||
| import collections |  | ||||||
| import copy |  | ||||||
| import os |  | ||||||
| import random |  | ||||||
| from typing import Any, Dict, List, Optional, Text, Union |  | ||||||
|  |  | ||||||
| from nats_bench.api_utils import ArchResults |  | ||||||
| from nats_bench.api_utils import NASBenchMetaAPI |  | ||||||
| from nats_bench.api_utils import get_torch_home |  | ||||||
| from nats_bench.api_utils import nats_is_dir |  | ||||||
| from nats_bench.api_utils import nats_is_file |  | ||||||
| from nats_bench.api_utils import PICKLE_EXT |  | ||||||
| from nats_bench.api_utils import pickle_load |  | ||||||
| from nats_bench.api_utils import time_string |  | ||||||
|  |  | ||||||
| import numpy as np |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ALL_BASE_NAMES = ['NATS-tss-v1_0-3ffb9'] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def print_information(information, extra_info=None, show=False): |  | ||||||
|   """print out the information of a given ArchResults.""" |  | ||||||
|   dataset_names = information.get_dataset_names() |  | ||||||
|   strings = [ |  | ||||||
|       information.arch_str, |  | ||||||
|       'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info) |  | ||||||
|   ] |  | ||||||
|  |  | ||||||
|   def metric2str(loss, acc): |  | ||||||
|     return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc) |  | ||||||
|  |  | ||||||
|   for dataset in dataset_names: |  | ||||||
|     metric = information.get_compute_costs(dataset) |  | ||||||
|     flop, param, latency = metric['flops'], metric['params'], metric['latency'] |  | ||||||
|     str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format( |  | ||||||
|         dataset, flop, param, |  | ||||||
|         '{:.2f}'.format(latency * |  | ||||||
|                         1000) if latency is not None and latency > 0 else None) |  | ||||||
|     train_info = information.get_metrics(dataset, 'train') |  | ||||||
|     if dataset == 'cifar10-valid': |  | ||||||
|       valid_info = information.get_metrics(dataset, 'x-valid') |  | ||||||
|       str2 = '{:14s} train : [{:}], valid : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(valid_info['loss'], valid_info['accuracy'])) |  | ||||||
|     elif dataset == 'cifar10': |  | ||||||
|       test__info = information.get_metrics(dataset, 'ori-test') |  | ||||||
|       str2 = '{:14s} train : [{:}], test  : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(test__info['loss'], test__info['accuracy'])) |  | ||||||
|     else: |  | ||||||
|       valid_info = information.get_metrics(dataset, 'x-valid') |  | ||||||
|       test__info = information.get_metrics(dataset, 'x-test') |  | ||||||
|       str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format( |  | ||||||
|           dataset, metric2str(train_info['loss'], train_info['accuracy']), |  | ||||||
|           metric2str(valid_info['loss'], valid_info['accuracy']), |  | ||||||
|           metric2str(test__info['loss'], test__info['accuracy'])) |  | ||||||
|     strings += [str1, str2] |  | ||||||
|   if show: print('\n'.join(strings)) |  | ||||||
|   return strings |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class NATStopology(NASBenchMetaAPI): |  | ||||||
|   """This is the class for the API of topology search space in NATS-Bench.""" |  | ||||||
|  |  | ||||||
|   def __init__(self, |  | ||||||
|                file_path_or_dict: Optional[Union[Text, Dict[Text, Any]]] = None, |  | ||||||
|                fast_mode: bool = False, |  | ||||||
|                verbose: bool = True): |  | ||||||
|     """The initialization function that takes the dataset file path (or a dict loaded from that path) as input.""" |  | ||||||
|     self._all_base_names = ALL_BASE_NAMES |  | ||||||
|     self.filename = None |  | ||||||
|     self._search_space_name = 'topology' |  | ||||||
|     self._fast_mode = fast_mode |  | ||||||
|     self._archive_dir = None |  | ||||||
|     self._full_train_epochs = 200 |  | ||||||
|     self.reset_time() |  | ||||||
|     if file_path_or_dict is None: |  | ||||||
|       if self._fast_mode: |  | ||||||
|         self._archive_dir = os.path.join( |  | ||||||
|             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) |  | ||||||
|       else: |  | ||||||
|         file_path_or_dict = os.path.join( |  | ||||||
|             get_torch_home(), '{:}.{:}'.format( |  | ||||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) |  | ||||||
|       print('{:} Try to use the default NATS-Bench (topology) path from ' |  | ||||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict)) |  | ||||||
|     if isinstance(file_path_or_dict, str): |  | ||||||
|       file_path_or_dict = str(file_path_or_dict) |  | ||||||
|       if verbose: |  | ||||||
|         print('{:} Try to create the NATS-Bench (topology) api ' |  | ||||||
|               'from {:} with fast_mode={:}'.format( |  | ||||||
|                   time_string(), file_path_or_dict, fast_mode)) |  | ||||||
|       if not nats_is_file(file_path_or_dict) and not nats_is_dir( |  | ||||||
|           file_path_or_dict): |  | ||||||
|         raise ValueError('{:} is neither a file or a dir.'.format( |  | ||||||
|             file_path_or_dict)) |  | ||||||
|       self.filename = os.path.basename(file_path_or_dict) |  | ||||||
|       if fast_mode: |  | ||||||
|         if nats_is_file(file_path_or_dict): |  | ||||||
|           raise ValueError('fast_mode={:} must feed the path for directory ' |  | ||||||
|                            ': {:}'.format(fast_mode, file_path_or_dict)) |  | ||||||
|         else: |  | ||||||
|           self._archive_dir = file_path_or_dict |  | ||||||
|       else: |  | ||||||
|         if nats_is_dir(file_path_or_dict): |  | ||||||
|           raise ValueError('fast_mode={:} must feed the path for file ' |  | ||||||
|                            ': {:}'.format(fast_mode, file_path_or_dict)) |  | ||||||
|         else: |  | ||||||
|           file_path_or_dict = pickle_load(file_path_or_dict) |  | ||||||
|     elif isinstance(file_path_or_dict, dict): |  | ||||||
|       file_path_or_dict = copy.deepcopy(file_path_or_dict) |  | ||||||
|     self.verbose = verbose |  | ||||||
|     if isinstance(file_path_or_dict, dict): |  | ||||||
|       keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') |  | ||||||
|       for key in keys: |  | ||||||
|         if key not in file_path_or_dict: |  | ||||||
|           raise ValueError('Can not find key[{:}] in the dict'.format(key)) |  | ||||||
|       self.meta_archs = copy.deepcopy(file_path_or_dict['meta_archs']) |  | ||||||
|       # NOTE(xuanyidong): This is a dict mapping each architecture to a dict, |  | ||||||
|       # where the key is #epochs and the value is ArchResults |  | ||||||
|       self.arch2infos_dict = collections.OrderedDict() |  | ||||||
|       self._avaliable_hps = set() |  | ||||||
|       for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): |  | ||||||
|         all_infos = file_path_or_dict['arch2infos'][xkey] |  | ||||||
|         hp2archres = collections.OrderedDict() |  | ||||||
|         for hp_key, results in all_infos.items(): |  | ||||||
|           hp2archres[hp_key] = ArchResults.create_from_state_dict(results) |  | ||||||
|           self._avaliable_hps.add(hp_key)  # save the avaliable hyper-parameter |  | ||||||
|         self.arch2infos_dict[xkey] = hp2archres |  | ||||||
|       self.evaluated_indexes = set(file_path_or_dict['evaluated_indexes']) |  | ||||||
|     elif self.archive_dir is not None: |  | ||||||
|       benchmark_meta = pickle_load('{:}/meta.{:}'.format( |  | ||||||
|           self.archive_dir, PICKLE_EXT)) |  | ||||||
|       self.meta_archs = copy.deepcopy(benchmark_meta['meta_archs']) |  | ||||||
|       self.arch2infos_dict = collections.OrderedDict() |  | ||||||
|       self._avaliable_hps = set() |  | ||||||
|       self.evaluated_indexes = set() |  | ||||||
|     else: |  | ||||||
|       raise ValueError('file_path_or_dict [{:}] must be a dict or archive_dir ' |  | ||||||
|                        'must be set'.format(type(file_path_or_dict))) |  | ||||||
|     self.archstr2index = {} |  | ||||||
|     for idx, arch in enumerate(self.meta_archs): |  | ||||||
|       if arch in self.archstr2index: |  | ||||||
|         raise ValueError('This [{:}]-th arch {:} already in the ' |  | ||||||
|                          'dict ({:}).'.format( |  | ||||||
|                              idx, arch, self.archstr2index[arch])) |  | ||||||
|       self.archstr2index[arch] = idx |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Create NATS-Bench (topology) done with {:}/{:} architectures ' |  | ||||||
|             'avaliable.'.format(time_string(), |  | ||||||
|                                 len(self.evaluated_indexes), |  | ||||||
|                                 len(self.meta_archs))) |  | ||||||
|  |  | ||||||
|   def query_info_str_by_arch(self, arch, hp: Text = '12'): |  | ||||||
|     """Query the information of a specific architecture. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|       arch: it can be an architecture index or an architecture string. |  | ||||||
|  |  | ||||||
|       hp: the hyperparamete indicator, could be 12 or 200. The difference |  | ||||||
|           between these three configurations are the number of training epochs. |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|       ArchResults instance |  | ||||||
|     """ |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Call query_info_str_by_arch with arch={:}' |  | ||||||
|             'and hp={:}'.format(time_string(), arch, hp)) |  | ||||||
|     return self._query_info_str_by_arch(arch, hp, print_information) |  | ||||||
|  |  | ||||||
|   def get_more_info(self, |  | ||||||
|                     index, |  | ||||||
|                     dataset, |  | ||||||
|                     iepoch=None, |  | ||||||
|                     hp: Text = '12', |  | ||||||
|                     is_random: bool = True): |  | ||||||
|     """Return the metric for the `index`-th architecture.""" |  | ||||||
|     if self.verbose: |  | ||||||
|       print('{:} Call the get_more_info function with index={:}, dataset={:}, ' |  | ||||||
|             'iepoch={:}, hp={:}, and is_random={:}.'.format( |  | ||||||
|                 time_string(), index, dataset, iepoch, hp, is_random)) |  | ||||||
|     index = self.query_index_by_arch(index)  # To avoid the input is a string or an instance of a arch object |  | ||||||
|     self._prepare_info(index) |  | ||||||
|     if index not in self.arch2infos_dict: |  | ||||||
|       raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) |  | ||||||
|     archresult = self.arch2infos_dict[index][str(hp)] |  | ||||||
|     # if randomly select one trial, select the seed at first |  | ||||||
|     if isinstance(is_random, bool) and is_random: |  | ||||||
|       seeds = archresult.get_dataset_seeds(dataset) |  | ||||||
|       is_random = random.choice(seeds) |  | ||||||
|     # collect the training information |  | ||||||
|     train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random) |  | ||||||
|     total = train_info['iepoch'] + 1 |  | ||||||
|     xinfo = { |  | ||||||
|         'train-loss': |  | ||||||
|             train_info['loss'], |  | ||||||
|         'train-accuracy': |  | ||||||
|             train_info['accuracy'], |  | ||||||
|         'train-per-time': |  | ||||||
|             train_info['all_time'] / |  | ||||||
|             total if train_info['all_time'] is not None else None, |  | ||||||
|         'train-all-time': |  | ||||||
|             train_info['all_time'] |  | ||||||
|     } |  | ||||||
|     # collect the evaluation information |  | ||||||
|     if dataset == 'cifar10-valid': |  | ||||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) |  | ||||||
|       try: |  | ||||||
|         test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         test_info = None |  | ||||||
|       valtest_info = None |  | ||||||
|       xinfo['comment'] = 'In this dict, train-loss/accuracy/time is the metric on the train set of CIFAR-10. The test-loss/accuracy/time is the performance of the CIFAR-10 test set after training on the train set by {:} epochs. The per-time and total-time indicate the per epoch and total time costs, respectively.'.format(hp) |  | ||||||
|     else: |  | ||||||
|       if dataset == 'cifar10': |  | ||||||
|         xinfo['comment'] = 'In this dict, train-loss/accuracy/time is the metric on the train+valid sets of CIFAR-10. The test-loss/accuracy/time is the performance of the CIFAR-10 test set after training on the train+valid sets by {:} epochs. The per-time and total-time indicate the per epoch and total time costs, respectively.'.format(hp) |  | ||||||
|       try:  # collect results on the proposed test set |  | ||||||
|         if dataset == 'cifar10': |  | ||||||
|           test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|         else: |  | ||||||
|           test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         test_info = None |  | ||||||
|       try:  # collect results on the proposed validation set |  | ||||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         valid_info = None |  | ||||||
|       try: |  | ||||||
|         if dataset != 'cifar10': |  | ||||||
|           valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) |  | ||||||
|         else: |  | ||||||
|           valtest_info = None |  | ||||||
|       except Exception as unused_e:  # pylint: disable=broad-except |  | ||||||
|         valtest_info = None |  | ||||||
|     if valid_info is not None: |  | ||||||
|       xinfo['valid-loss'] = valid_info['loss'] |  | ||||||
|       xinfo['valid-accuracy'] = valid_info['accuracy'] |  | ||||||
|       xinfo['valid-per-time'] = valid_info['all_time'] / total if valid_info['all_time'] is not None else None |  | ||||||
|       xinfo['valid-all-time'] = valid_info['all_time'] |  | ||||||
|     if test_info is not None: |  | ||||||
|       xinfo['test-loss'] = test_info['loss'] |  | ||||||
|       xinfo['test-accuracy'] = test_info['accuracy'] |  | ||||||
|       xinfo['test-per-time'] = test_info['all_time'] / total if test_info['all_time'] is not None else None |  | ||||||
|       xinfo['test-all-time'] = test_info['all_time'] |  | ||||||
|     if valtest_info is not None: |  | ||||||
|       xinfo['valtest-loss'] = valtest_info['loss'] |  | ||||||
|       xinfo['valtest-accuracy'] = valtest_info['accuracy'] |  | ||||||
|       xinfo['valtest-per-time'] = valtest_info['all_time'] / total if valtest_info['all_time'] is not None else None |  | ||||||
|       xinfo['valtest-all-time'] = valtest_info['all_time'] |  | ||||||
|     return xinfo |  | ||||||
|  |  | ||||||
|   def show(self, index: int = -1) -> None: |  | ||||||
|     """This function will print the information of a specific (or all) architecture(s).""" |  | ||||||
|     self._show(index, print_information) |  | ||||||
|  |  | ||||||
|   @staticmethod |  | ||||||
|   def str2lists(arch_str: Text) -> List[Any]: |  | ||||||
|     """Shows how to read the string-based architecture encoding. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|       arch_str: the input is a string indicates the architecture topology, such as |  | ||||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| |  | ||||||
|     Returns: |  | ||||||
|       a list of tuple, contains multiple (op, input_node_index) pairs. |  | ||||||
|  |  | ||||||
|     [USAGE] |  | ||||||
|     It is the same as the `str2structure` func in AutoDL-Projects: |  | ||||||
|       `github.com/D-X-Y/AutoDL-Projects/lib/models/cell_searchs/genotypes.py` |  | ||||||
|     ``` |  | ||||||
|       arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) |  | ||||||
|       print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list |  | ||||||
|       for i, node in enumerate(arch): |  | ||||||
|         print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node)) |  | ||||||
|     ``` |  | ||||||
|     """ |  | ||||||
|     node_strs = arch_str.split('+') |  | ||||||
|     genotypes = [] |  | ||||||
|     for unused_i, node_str in enumerate(node_strs): |  | ||||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|')))  # pylint: disable=g-explicit-bool-comparison |  | ||||||
|       for xinput in inputs: |  | ||||||
|         assert len( |  | ||||||
|             xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) |  | ||||||
|       inputs = (xi.split('~') for xi in inputs) |  | ||||||
|       input_infos = tuple((op, int(idx)) for (op, idx) in inputs) |  | ||||||
|       genotypes.append(input_infos) |  | ||||||
|     return genotypes |  | ||||||
|  |  | ||||||
|   @staticmethod |  | ||||||
|   def str2matrix(arch_str: Text, |  | ||||||
|                  search_space: List[Text] = ('none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3')) -> np.ndarray: |  | ||||||
|     """Convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|       arch_str: the input is a string indicates the architecture topology, such as |  | ||||||
|                     |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| |  | ||||||
|       search_space: a list of operation string, the default list is the topology search space for NATS-BENCH. |  | ||||||
|         the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/main/lib/models/cell_operations.py#L24 |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|       the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology |  | ||||||
|  |  | ||||||
|     [USAGE] |  | ||||||
|       matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) |  | ||||||
|       This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful). |  | ||||||
|          [ [0, 0, 0, 0],  # the first line represents the input (0-th) node |  | ||||||
|            [2, 0, 0, 0],  # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node ) |  | ||||||
|            [0, 0, 0, 0],  # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) |  | ||||||
|            [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node ) |  | ||||||
|       In the topology search space in NATS-BENCH, 0-th-op is 'none', 1-th-op is 'skip_connect', |  | ||||||
|          2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'. |  | ||||||
|     [NOTE] |  | ||||||
|       If a node has two input-edges from the same node, this function does not work. One edge will be overlapped. |  | ||||||
|     """ |  | ||||||
|     node_strs = arch_str.split('+') |  | ||||||
|     num_nodes = len(node_strs) + 1 |  | ||||||
|     matrix = np.zeros((num_nodes, num_nodes)) |  | ||||||
|     for i, node_str in enumerate(node_strs): |  | ||||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|')))  # pylint: disable=g-explicit-bool-comparison |  | ||||||
|       for xinput in inputs: |  | ||||||
|         assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) |  | ||||||
|       for xi in inputs: |  | ||||||
|         op, idx = xi.split('~') |  | ||||||
|         if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space)) |  | ||||||
|         op_idx, node_idx = search_space.index(op), int(idx) |  | ||||||
|         matrix[i+1, node_idx] = op_idx |  | ||||||
|     return matrix |  | ||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										1
									
								
								lib/spaces/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								lib/spaces/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | |||||||
|  | # | ||||||
		Reference in New Issue
	
	Block a user