From 95ec4d328e704e5d4bbbda79e31d862bca374803 Mon Sep 17 00:00:00 2001 From: D-X-Y <280835372@qq.com> Date: Sat, 21 Dec 2019 11:13:08 +1100 Subject: [PATCH] update NAS-Bench-102 --- .gitignore | 3 ++ NAS-Bench-102.md | 19 ++++++--- lib/nas_102_api/api.py | 93 +++++++++++++++++++++++++++--------------- 3 files changed, 76 insertions(+), 39 deletions(-) diff --git a/.gitignore b/.gitignore index 7173302..fce4354 100644 --- a/.gitignore +++ b/.gitignore @@ -115,3 +115,6 @@ GPU-*.sh cal.sh aaa cx.sh + +NAS-Bench-102-v1_0.pth +lib/NAS-Bench-102-v1_0.pth diff --git a/NAS-Bench-102.md b/NAS-Bench-102.md index b086fe8..d4e2213 100644 --- a/NAS-Bench-102.md +++ b/NAS-Bench-102.md @@ -6,11 +6,16 @@ Each edge here is associated with an operation selected from a predefined operat For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. In this Markdown file, we provide: -- Detailed instruction to reproduce NAS-Bench-102. -- 10 NAS algorithms evaluated in our paper. +- [How to Use NAS-Bench-102](#how-to-use-nas-bench-102) +- [Instruction to re-generate NAS-Bench-102](#instruction-to-re-generate-nas-bench-102) +- [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-102) Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. +The data file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan]. + +The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan]. + ## How to Use NAS-Bench-102 1. Creating an API instance from a file: @@ -35,8 +40,8 @@ api.show(2) # show the mean loss and accuracy of an architecture info = api.query_meta_info_by_index(1) -loss, accuracy = info.get_metrics('cifar10', 'train') -flops, params, latency = info.get_comput_costs('cifar100') +res_metrics = info.get_metrics('cifar10', 'train') +cost_metrics = info.get_comput_costs('cifar100') # get the detailed information results = api.query_by_index(1, 'cifar100') @@ -55,7 +60,8 @@ index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1 api.show(index) ``` -5. For other usages, please see `lib/aa_nas_api/api.py` +5. For other usages, please see `lib/nas_102_api/api.py` + ### Detailed Instruction @@ -98,8 +104,10 @@ print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss ``` from nas_102_api import NASBench102API as API api = API('NAS-Bench-102-v1_0.pth') +api.show(-1) # show info of all architectures ``` + ## Instruction to Re-Generate NAS-Bench-102 1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell. @@ -139,6 +147,7 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 ``` + ## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102 We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102. diff --git a/lib/nas_102_api/api.py b/lib/nas_102_api/api.py index 07de2f7..4e0053c 100644 --- a/lib/nas_102_api/api.py +++ b/lib/nas_102_api/api.py @@ -1,6 +1,8 @@ ################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # -################################################## +################################################################################# +# NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search # +################################################################################# import os, sys, copy, random, torch, numpy as np from collections import OrderedDict, defaultdict @@ -12,19 +14,21 @@ def print_information(information, extra_info=None, show=False): return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc) for ida, dataset in enumerate(dataset_names): - flop, param, latency = information.get_comput_costs(dataset) - str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency > 0 else None) - train_loss, train_acc = information.get_metrics(dataset, 'train') + #flop, param, latency = information.get_comput_costs(dataset) + metric = information.get_comput_costs(dataset) + flop, param, latency = metric['flops'], metric['params'], metric['latency'] + str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None) + train_info = information.get_metrics(dataset, 'train') if dataset == 'cifar10-valid': - valid_loss, valid_acc = information.get_metrics(dataset, 'x-valid') - str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_loss, train_acc), metric2str(valid_loss, valid_acc)) + valid_info = information.get_metrics(dataset, 'x-valid') + str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy'])) elif dataset == 'cifar10': - test__loss, test__acc = information.get_metrics(dataset, 'ori-test') - str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_loss, train_acc), metric2str(test__loss, test__acc)) + test__info = information.get_metrics(dataset, 'ori-test') + str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) else: - valid_loss, valid_acc = information.get_metrics(dataset, 'x-valid') - test__loss, test__acc = information.get_metrics(dataset, 'x-test') - str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_loss, train_acc), metric2str(valid_loss, valid_acc), metric2str(test__loss, test__acc)) + valid_info = information.get_metrics(dataset, 'x-valid') + test__info = information.get_metrics(dataset, 'x-test') + str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) strings += [str1, str2] if show: print('\n'.join(strings)) return strings @@ -34,19 +38,21 @@ class NASBench102API(object): def __init__(self, file_path_or_dict, verbose=True): if isinstance(file_path_or_dict, str): - if verbose: print('try to create NAS-Bench-102 api from {:}'.format(file_path_or_dict)) + if verbose: print('try to create the NAS-Bench-102 api from {:}'.format(file_path_or_dict)) assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) file_path_or_dict = torch.load(file_path_or_dict) else: file_path_or_dict = copy.deepcopy( file_path_or_dict ) assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) - import pdb; pdb.set_trace() # we will update this api soon keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) - self.arch2infos = OrderedDict() + self.arch2infos_less = OrderedDict() + self.arch2infos_full = OrderedDict() for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): - self.arch2infos[xkey] = ArchResults.create_from_state_dict( file_path_or_dict['arch2infos'][xkey] ) + all_info = file_path_or_dict['arch2infos'][xkey] + self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] ) + self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] ) self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) self.archstr2index = {} for idx, arch in enumerate(self.meta_archs): @@ -73,35 +79,46 @@ class NASBench102API(object): else: arch_index = -1 return arch_index - def query_by_arch(self, arch): - arch_index = self.query_index_by_arch(arch) - if arch_index == -1: return None - if arch_index in self.arch2infos: - strings = print_information(self.arch2infos[ arch_index ], 'arch-index={:}'.format(arch_index)) + def query_by_arch(self, arch, use_12epochs_result=False): + if isinstance(arch, int): + arch_index = arch + else: + arch_index = self.query_index_by_arch(arch) + if arch_index == -1: return None # the following two lines are used to support few training epochs + if use_12epochs_result: arch2infos = self.arch2infos_less + else : arch2infos = self.arch2infos_full + if arch_index in arch2infos: + strings = print_information(arch2infos[ arch_index ], 'arch-index={:}'.format(arch_index)) return '\n'.join(strings) else: print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index)) return None - def query_by_index(self, arch_index, dataname): - assert arch_index in self.arch2infos, 'arch_index [{:}] does not in arch2info'.format(arch_index) - archInfo = copy.deepcopy( self.arch2infos[ arch_index ] ) + def query_by_index(self, arch_index, dataname, use_12epochs_result=False): + if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less + else : basestr, arch2infos = '200epochs', self.arch2infos_full + assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr) + archInfo = copy.deepcopy( arch2infos[ arch_index ] ) assert dataname in archInfo.get_dataset_names(), 'invalid dataset-name : {:}'.format(dataname) info = archInfo.query(dataname) return info - def query_meta_info_by_index(self, arch_index): - assert arch_index in self.arch2infos, 'arch_index [{:}] does not in arch2info'.format(arch_index) - archInfo = copy.deepcopy( self.arch2infos[ arch_index ] ) + def query_meta_info_by_index(self, arch_index, use_12epochs_result=False): + if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less + else : basestr, arch2infos = '200epochs', self.arch2infos_full + assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr) + archInfo = copy.deepcopy( arch2infos[ arch_index ] ) return archInfo - def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None): + def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, use_12epochs_result=False): + if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less + else : basestr, arch2infos = '200epochs', self.arch2infos_full best_index, highest_accuracy = -1, None for i, idx in enumerate(self.evaluated_indexes): - flop, param, latency = self.arch2infos[idx].get_comput_costs(dataset) + flop, param, latency = arch2infos[idx].get_comput_costs(dataset) if FLOP_max is not None and flop > FLOP_max : continue if Param_max is not None and param > Param_max: continue - loss, accuracy = self.arch2infos[idx].get_metrics(dataset, metric_on_set) + loss, accuracy = arch2infos[idx].get_metrics(dataset, metric_on_set) if best_index == -1: best_index, highest_accuracy = idx, accuracy elif highest_accuracy < accuracy: @@ -113,21 +130,29 @@ class NASBench102API(object): return copy.deepcopy(self.meta_archs[index]) def show(self, index=-1): - if index == -1: # show all architectures + if index < 0: # show all architectures print(self) for i, idx in enumerate(self.evaluated_indexes): print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10) print('arch : {:}'.format(self.meta_archs[idx])) - strings = print_information(self.arch2infos[idx]) - print('>' * 20) + strings = print_information(self.arch2infos_full[idx]) + print('>' * 40 + ' 200 epochs ' + '>' * 40) print('\n'.join(strings)) - print('<' * 20) + strings = print_information(self.arch2infos_less[idx]) + print('>' * 40 + ' 12 epochs ' + '>' * 40) + print('\n'.join(strings)) + print('<' * 40 + '------------' + '<' * 40) else: if 0 <= index < len(self.meta_archs): if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index)) else: - strings = print_information(self.arch2infos[index]) + strings = print_information(self.arch2infos_full[index]) + print('>' * 40 + ' 200 epochs ' + '>' * 40) print('\n'.join(strings)) + strings = print_information(self.arch2infos_less[index]) + print('>' * 40 + ' 12 epochs ' + '>' * 40) + print('\n'.join(strings)) + print('<' * 40 + '------------' + '<' * 40) else: print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs)))