Update visualization codes
This commit is contained in:
		
							
								
								
									
										114
									
								
								exps/experimental/test-nas-plot.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								exps/experimental/test-nas-plot.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,114 @@ | ||||
| # python ./exps/vis/test.py | ||||
| import os, sys, random | ||||
| from pathlib import Path | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import numpy as np | ||||
| from collections import OrderedDict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
| def test_nas_api(): | ||||
|   from nas_201_api import ArchResults | ||||
|   xdata   = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth') | ||||
|   for key in ['full', 'less']: | ||||
|     print ('\n------------------------- {:} -------------------------'.format(key)) | ||||
|     archRes = ArchResults.create_from_state_dict(xdata[key]) | ||||
|     print(archRes) | ||||
|     print(archRes.arch_idx_str()) | ||||
|     print(archRes.get_dataset_names()) | ||||
|     print(archRes.get_comput_costs('cifar10-valid')) | ||||
|     # get the metrics | ||||
|     print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) | ||||
|     print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) | ||||
|     print(archRes.query('cifar10-valid', 777)) | ||||
|  | ||||
|  | ||||
| OPS    = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3'] | ||||
| COLORS = ['chartreuse'  , 'cyan'    , 'navyblue', 'chocolate1'] | ||||
|  | ||||
| def plot(filename): | ||||
|   from graphviz import Digraph | ||||
|   g = Digraph( | ||||
|       format='png', | ||||
|       edge_attr=dict(fontsize='20', fontname="times"), | ||||
|       node_attr=dict(style='filled', shape='rect', align='center', fontsize='20', height='0.5', width='0.5', penwidth='2', fontname="times"), | ||||
|       engine='dot') | ||||
|   g.body.extend(['rankdir=LR']) | ||||
|  | ||||
|   steps = 5 | ||||
|   for i in range(0, steps): | ||||
|     if i == 0: | ||||
|       g.node(str(i), fillcolor='darkseagreen2') | ||||
|     elif i+1 == steps: | ||||
|       g.node(str(i), fillcolor='palegoldenrod') | ||||
|     else: g.node(str(i), fillcolor='lightblue') | ||||
|  | ||||
|   for i in range(1, steps): | ||||
|     for xin in range(i): | ||||
|       op_i = random.randint(0, len(OPS)-1) | ||||
|       #g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i]) | ||||
|       g.edge(str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i]) | ||||
|       #import pdb; pdb.set_trace() | ||||
|   g.render(filename, cleanup=True, view=False) | ||||
|  | ||||
|  | ||||
| def test_auto_grad(): | ||||
|   class Net(torch.nn.Module): | ||||
|     def __init__(self, iS): | ||||
|       super(Net, self).__init__() | ||||
|       self.layer = torch.nn.Linear(iS, 1) | ||||
|     def forward(self, inputs): | ||||
|       outputs = self.layer(inputs) | ||||
|       outputs = torch.exp(outputs) | ||||
|       return outputs.mean() | ||||
|   net = Net(10) | ||||
|   inputs = torch.rand(256, 10) | ||||
|   loss = net(inputs) | ||||
|   first_order_grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True, create_graph=True) | ||||
|   first_order_grads = torch.cat([x.view(-1) for x in first_order_grads]) | ||||
|   second_order_grads = [] | ||||
|   for grads in  first_order_grads: | ||||
|     s_grads = torch.autograd.grad(grads, net.parameters()) | ||||
|     second_order_grads.append( s_grads ) | ||||
|  | ||||
|  | ||||
| def test_one_shot_model(ckpath, use_train): | ||||
|   from models import get_cell_based_tiny_net, get_search_spaces | ||||
|   from datasets import get_datasets, SearchDataset | ||||
|   from config_utils import load_config, dict2config | ||||
|   from utils.nas_utils import evaluate_one_shot | ||||
|   use_train = int(use_train) > 0 | ||||
|   #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth' | ||||
|   #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth' | ||||
|   print ('ckpath : {:}'.format(ckpath)) | ||||
|   ckp = torch.load(ckpath) | ||||
|   xargs = ckp['args'] | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   #config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, None) | ||||
|   config = load_config('./configs/nas-benchmark/algos/DARTS.config', {'class_num': class_num, 'xshape': xshape}, None) | ||||
|   if xargs.dataset == 'cifar10': | ||||
|     cifar_split = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     xvalid_data = deepcopy(train_data) | ||||
|     xvalid_data.transform = valid_data.transform | ||||
|     valid_loader= torch.utils.data.DataLoader(xvalid_data, batch_size=2048, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar_split.valid), num_workers=12, pin_memory=True) | ||||
|   else: raise ValueError('invalid dataset : {:}'.format(xargs.dataseet)) | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space, | ||||
|                               'affine'   : False, 'track_running_stats': True}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   search_model.load_state_dict( ckp['search_model'] ) | ||||
|   search_model = search_model.cuda() | ||||
|   api = API('/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth') | ||||
|   archs, probs, accuracies = evaluate_one_shot(search_model, valid_loader, api, use_train) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #test_nas_api() | ||||
|   #for i in range(200): plot('{:04d}'.format(i)) | ||||
|   #test_auto_grad() | ||||
|   test_one_shot_model(sys.argv[1], sys.argv[2]) | ||||
		Reference in New Issue
	
	Block a user