updates for beta
This commit is contained in:
		| @@ -9,5 +9,6 @@ | ||||
|   "momentum" : ["float", "0.9"], | ||||
|   "nesterov" : ["bool",  "1"], | ||||
|   "criterion": ["str",   "Softmax"], | ||||
|   "batch_size": ["int",  "64"] | ||||
|   "batch_size": ["int",  "64"], | ||||
|   "test_batch_size": ["int",  "512"] | ||||
| } | ||||
|   | ||||
							
								
								
									
										274
									
								
								exps/AA-NAS-Bench-main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										274
									
								
								exps/AA-NAS-Bench-main.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,274 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL     import ImageFile | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from procedures   import save_checkpoint, copy_checkpoint | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
| from AA_functions import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configurature | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, \ | ||||
|                             {'class_num': class_num, | ||||
|                              'xshape'   : xshape}, \ | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|      | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( workers ) | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|   all_archs = meta_info['archs'] | ||||
|   assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) | ||||
|   assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) | ||||
|   if arch_index == -1: | ||||
|     to_evaluate_indexes = list(range(srange[0], srange[1]+1)) | ||||
|   else: | ||||
|     to_evaluate_indexes = [arch_index] | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : arch_index = {:}'.format(arch_index)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> architecture config : {:}'.format(arch_config)) | ||||
|    | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     arch = all_archs[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) | ||||
|     #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|     logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) | ||||
|    | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else         : | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} valuate {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) | ||||
|     logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|  | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.set_num_threads( workers ) | ||||
|    | ||||
|   save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}'.format(model_str, arch_config['channel'], arch_config['num_cells']) | ||||
|   logger   = Logger(str(save_dir), 0, False) | ||||
|   if model_str in CellArchitectures: | ||||
|     arch   = CellArchitectures[model_str] | ||||
|     logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) | ||||
|   else: | ||||
|     try: | ||||
|       arch = CellStructure.str2structure(model_str) | ||||
|     except: | ||||
|       raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) | ||||
|   assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) | ||||
|   logger.log('Start train-evaluate {:}'.format(arch.tostr())) | ||||
|   logger.log('arch_config : {:}'.format(arch_config)) | ||||
|  | ||||
|   start_time, seed_time = time.time(), AverageMeter() | ||||
|   for _is, seed in enumerate(seeds): | ||||
|     logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) | ||||
|     to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) | ||||
|     if to_save_name.exists(): | ||||
|       logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
|     all_dataset_keys = checkpoint['all_dataset_keys'] | ||||
|     for dataset_key in all_dataset_keys: | ||||
|       logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) | ||||
|       dataset_info = checkpoint[dataset_key] | ||||
|       #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|       logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) | ||||
|       logger.log('config : {:}'.format(dataset_info['config'])) | ||||
|       logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) | ||||
|       last_epoch = dataset_info['total_epoch'] - 1 | ||||
|       train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] | ||||
|       valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] | ||||
|       logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) | ||||
|     # measure elapsed time | ||||
|     seed_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) | ||||
|     logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time)) | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'aa-nas') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   # to test fixed-random shuffle  | ||||
|   #print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|   #print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   total_arch = len(archs) | ||||
|    | ||||
|   num = 50000 | ||||
|   indexes_5W = list(range(num)) | ||||
|   random.seed( 1021 ) | ||||
|   random.shuffle( indexes_5W ) | ||||
|   train_split = sorted( list(set(indexes_5W[:num//2])) ) | ||||
|   valid_split = sorted( list(set(indexes_5W[num//2:])) ) | ||||
|   assert len(train_split) + len(valid_split) == num | ||||
|   assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) | ||||
|   splits = {num: {'train': train_split, 'valid': valid_split} } | ||||
|  | ||||
|   info = {'archs' : [x.tostr() for x in archs], | ||||
|           'total' : total_arch, | ||||
|           'max_node' : max_node, | ||||
|           'splits': splits} | ||||
|  | ||||
|   save_dir = Path(save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) | ||||
|   assert not save_name.exists(), '{:} already exist'.format(save_name) | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
|  | ||||
|   script_name = save_dir / 'meta-node-{:}.script.txt'.format(max_node) | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     gaps = total_arch // divide | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('bash ./scripts-search/AA-NAS-train-archs.sh {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:}'.format(script_name)) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--arch_index',  type=int,   default=-1,     help='The architecture index to be evaluated (cover mode).') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,                   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,                   help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) | ||||
|  | ||||
|   if args.mode == 'meta': | ||||
|     generate_meta_info(args.save_dir, args.max_node) | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|     assert meta_path.exists(), '{:} does not exist.'.format(meta_path) | ||||
|     meta_info = torch.load( meta_path ) | ||||
|     # check whether args is ok | ||||
|     assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) | ||||
|     assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
| @@ -62,7 +62,7 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf | ||||
|   # config. (containing some necessary arg) | ||||
|   #   baseline: The baseline score (i.e. average val_acc) from the previous epoch | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   GradnormMeter, LossMeter, ValAccMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() | ||||
|   GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time() | ||||
|    | ||||
|   shared_cnn.eval() | ||||
|   controller.train() | ||||
| @@ -96,8 +96,9 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf | ||||
|     # account | ||||
|     RewardMeter.update(reward.item()) | ||||
|     BaselineMeter.update(baseline.item()) | ||||
|     ValAccMeter.update(val_top1.item()) | ||||
|     ValAccMeter.update(val_top1.item()*100) | ||||
|     LossMeter.update(loss.item()) | ||||
|     EntropyMeter.update(entropy.item()) | ||||
|    | ||||
|     # Average gradient over controller_num_aggregate samples | ||||
|     loss = loss / config.ctl_num_aggre | ||||
| @@ -116,7 +117,8 @@ def train_controller(xloader, shared_cnn, controller, criterion, optimizer, conf | ||||
|       Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre) | ||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) | ||||
|       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr) | ||||
|       Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr) | ||||
|  | ||||
|   return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item() | ||||
|  | ||||
| @@ -250,7 +252,7 @@ def main(xargs): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline)) | ||||
|  | ||||
|     cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5)) | ||||
| @@ -264,7 +266,7 @@ def main(xargs): | ||||
|     logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline)) | ||||
|     best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader) | ||||
|     shared_cnn.module.update_arch(best_arch) | ||||
|     best_valid_acc = valid_func(valid_loader, shared_cnn, criterion) | ||||
|     _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion) | ||||
|  | ||||
|     genotypes[epoch] = best_arch | ||||
|     # check the best accuracy | ||||
| @@ -301,6 +303,14 @@ def main(xargs): | ||||
|     start_time = time.time() | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   logger.log('During searching, the best architecture is {:}'.format(genotypes['best'])) | ||||
|   logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best'])) | ||||
|   logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples)) | ||||
|   final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples) | ||||
|   shared_cnn.module.update_arch(final_arch) | ||||
|   final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion) | ||||
|   logger.log('The Selected Final Architecture : {:}'.format(final_arch)) | ||||
|   logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5)) | ||||
|   # check the performance from the architecture dataset | ||||
|   #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|   #  logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|   | ||||
| @@ -23,7 +23,6 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader): | ||||
|     scheduler.update(None, 1.0 * step / len(xloader)) | ||||
| @@ -33,9 +32,13 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|     data_time.update(time.time() - end) | ||||
|      | ||||
|     # update the weights | ||||
|     network.module.set_cal_mode( 'urs' ) | ||||
|     w_optimizer.zero_grad() | ||||
|     _, logits = network(base_inputs) | ||||
|     network.train() | ||||
|     sampled_arch = network.module.dync_genotype(True) | ||||
|     network.module.set_cal_mode('dynamic', sampled_arch) | ||||
|     #network.module.set_cal_mode( 'urs' ) | ||||
|     network.zero_grad() | ||||
|     _, logits = network( torch.cat((base_inputs, arch_inputs), dim=0) ) | ||||
|     logits    = logits[:base_inputs.size(0)] | ||||
|     base_loss = criterion(logits, base_targets) | ||||
|     base_loss.backward() | ||||
|     w_optimizer.step() | ||||
| @@ -46,8 +49,9 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|     base_top5.update  (base_prec5.item(), base_inputs.size(0)) | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     network.eval() | ||||
|     network.module.set_cal_mode( 'joint' ) | ||||
|     a_optimizer.zero_grad() | ||||
|     network.zero_grad() | ||||
|     _, logits = network(arch_inputs) | ||||
|     arch_loss = criterion(logits, arch_targets) | ||||
|     arch_loss.backward() | ||||
| @@ -68,15 +72,42 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5) | ||||
|       Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5) | ||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg | ||||
|       #print (nn.functional.softmax(network.module.arch_parameters, dim=-1)) | ||||
|       #print (network.module.arch_parameters) | ||||
|   return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def get_best_arch(xloader, network, n_samples): | ||||
|   with torch.no_grad(): | ||||
|     network.eval() | ||||
|     archs, valid_accs = [], [] | ||||
|     loader_iter = iter(xloader) | ||||
|     for i in range(n_samples): | ||||
|       try: | ||||
|         inputs, targets = next(loader_iter) | ||||
|       except: | ||||
|         loader_iter = iter(xloader) | ||||
|         inputs, targets = next(loader_iter) | ||||
|  | ||||
|       sampled_arch = network.module.dync_genotype(False) | ||||
|       network.module.set_cal_mode('dynamic', sampled_arch) | ||||
|       _, logits = network(inputs) | ||||
|       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5)) | ||||
|  | ||||
|       archs.append( sampled_arch ) | ||||
|       valid_accs.append( val_top1.item() ) | ||||
|  | ||||
|     best_idx = np.argmax(valid_accs) | ||||
|     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] | ||||
|     return best_arch, best_valid_acc | ||||
|  | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     network.eval() | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
| @@ -117,8 +148,8 @@ def main(xargs): | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/SETN.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   #config_path = 'configs/nas-benchmark/algos/SETN.config' | ||||
|   config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
| @@ -126,7 +157,7 @@ def main(xargs): | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data,  batch_size=config.test_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
| @@ -134,6 +165,7 @@ def main(xargs): | ||||
|   model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   logger.log('search space : {:}'.format(search_space)) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
| @@ -173,17 +205,24 @@ def main(xargs): | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     search_model.set_cal_mode('urs') | ||||
|     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | ||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) | ||||
|     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) | ||||
|     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) | ||||
|  | ||||
|     genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) | ||||
|     network.module.set_cal_mode('dynamic', genotype) | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('joint') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     search_model.set_cal_mode('select') | ||||
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) | ||||
|     #search_model.set_cal_mode('urs') | ||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     #logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     #search_model.set_cal_mode('joint') | ||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     #logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     #search_model.set_cal_mode('select') | ||||
|     #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion) | ||||
|     #logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) | ||||
|     # check the best accuracy | ||||
|     valid_accuracies[epoch] = valid_a_top1 | ||||
|     if valid_a_top1 > valid_accuracies['best']: | ||||
| @@ -192,7 +231,7 @@ def main(xargs): | ||||
|       find_best = True | ||||
|     else: find_best = False | ||||
|  | ||||
|     genotypes[epoch] = search_model.genotype() | ||||
|     genotypes[epoch] = genotype | ||||
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) | ||||
|     # save checkpoint | ||||
|     save_path = save_checkpoint({'epoch' : epoch + 1, | ||||
| @@ -219,6 +258,7 @@ def main(xargs): | ||||
|     start_time = time.time() | ||||
|  | ||||
|   # sampling | ||||
|   """ | ||||
|   with torch.no_grad(): | ||||
|     logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) | ||||
|   selected_archs = set() | ||||
| @@ -238,6 +278,7 @@ def main(xargs): | ||||
|     if best_arch is None or best_acc < valid_a_top1: | ||||
|       best_arch, best_acc = arch, valid_a_top1 | ||||
|   logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(best_arch, best_acc)) | ||||
|   """ | ||||
|  | ||||
|   logger.log('\n' + '-'*100) | ||||
|   # check the performance from the architecture dataset | ||||
| @@ -267,6 +308,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--select_num',         type=int,   help='The number of selected architectures to evaluate.') | ||||
|   parser.add_argument('--config_path',        type=str,   help='.') | ||||
|   # architecture leraning rate | ||||
|   parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') | ||||
|   parser.add_argument('--arch_weight_decay',  type=float, default=1e-3, help='weight decay for arch encoding') | ||||
|   | ||||
| @@ -83,7 +83,8 @@ class SearchCell(nn.Module): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         #aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) | ||||
|         inter_nodes.append( aggregation ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|   | ||||
| @@ -3,7 +3,7 @@ | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| @@ -87,7 +87,7 @@ class TinyNetworkSETN(nn.Module): | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|  | ||||
|   def dync_genotype(self): | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
| @@ -95,9 +95,12 @@ class TinyNetworkSETN(nn.Module): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|         op_index = torch.multinomial(weights, 1).item() | ||||
|         op_name  = self.op_names[ op_index ] | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|   | ||||
| @@ -69,12 +69,15 @@ class CosineAnnealingLR(_LRScheduler): | ||||
|   def get_lr(self): | ||||
|     lrs = [] | ||||
|     for base_lr in self.base_lrs: | ||||
|       if self.current_epoch >= self.warmup_epochs: | ||||
|       if self.current_epoch >= self.warmup_epochs and self.current_epoch < self.max_epochs: | ||||
|         last_epoch = self.current_epoch - self.warmup_epochs | ||||
|         if last_epoch < self.T_max: | ||||
|           lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * last_epoch / self.T_max)) / 2 | ||||
|         else: | ||||
|           lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.T_max-1.0) / self.T_max)) / 2 | ||||
|         #if last_epoch < self.T_max: | ||||
|         #if last_epoch < self.max_epochs: | ||||
|         lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * last_epoch / self.T_max)) / 2 | ||||
|         #else: | ||||
|         #  lr = self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.T_max-1.0) / self.T_max)) / 2 | ||||
|       elif self.current_epoch >= self.max_epochs: | ||||
|         lr = self.eta_min | ||||
|       else: | ||||
|         lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr | ||||
|       lrs.append( lr ) | ||||
|   | ||||
							
								
								
									
										42
									
								
								scripts-search/algos/ENAS.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								scripts-search/algos/ENAS.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,42 @@ | ||||
| #!/bin/bash | ||||
| # Efficient Neural Architecture Search via Parameter Sharing, ICML 2018 | ||||
| # bash ./scripts-search/scripts/algos/ENAS.sh cifar10 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/ENAS-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/ENAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--config_path ./configs/nas-benchmark/algos/ENAS.config \ | ||||
| 	--controller_entropy_weight 0.0001 \ | ||||
| 	--controller_bl_dec 0.99 \ | ||||
| 	--controller_train_steps 50 \ | ||||
| 	--controller_num_aggregate 20 \ | ||||
| 	--controller_num_samples 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
| @@ -33,6 +33,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--config_path configs/nas-benchmark/algos/SETN.config \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--select_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user