Update NATS-Bench to cope with lib->xautodl

This commit is contained in:
D-X-Y 2021-05-21 13:55:38 +08:00
parent b4e8eae63a
commit 97717d826e
11 changed files with 75 additions and 80 deletions

View File

@ -9,4 +9,4 @@
- [2020.10.15] [446262a](https://github.com/D-X-Y/AutoDL-Projects/tree/446262a) Update NATS-BENCH to version 1.0
- [2020.12.20] [dae387a](https://github.com/D-X-Y/AutoDL-Projects/tree/dae387a) Update NATS-BENCH to version 1.1
- [2021.05.18] [98fadf8](https://github.com/D-X-Y/AutoDL-Projects/tree/98fadf8) Before moving to `xautodl`
- [2021.05.19] [b50ad2a](https://github.com/D-X-Y/AutoDL-Projects/tree/b50ad2a) `xautodl` is close to ready
- [2021.05.21] [b4e8eae](https://github.com/D-X-Y/AutoDL-Projects/tree/b4e8eae) `xautodl` is close to ready

View File

@ -8,6 +8,7 @@
import os, sys, time, torch, random, argparse
from typing import List, Text, Dict, Any
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy

View File

@ -12,14 +12,11 @@ from collections import defaultdict
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from procedures import bench_evaluate_for_seed
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
from xautodl.config_utils import dict2config, load_config
from xautodl.procedures import bench_evaluate_for_seed
from xautodl.procedures import get_machine_info
from xautodl.datasets import get_datasets
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
def obtain_valid_ckp(save_dir: Text, total: int):

View File

@ -12,14 +12,11 @@ from collections import defaultdict
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from procedures import bench_evaluate_for_seed
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
from xautodl.config_utils import dict2config, load_config
from xautodl.procedures import bench_evaluate_for_seed
from xautodl.procedures import get_machine_info
from xautodl.datasets import get_datasets
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
def obtain_valid_ckp(save_dir: Text, total: int, possible_seeds: List[int]):

View File

@ -10,18 +10,14 @@
###################################################################
import os, sys, time, random, argparse, collections
from copy import deepcopy
from pathlib import Path
import torch
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger
from log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.config_utils import load_config
from xautodl.datasets import get_datasets, SearchDataset
from xautodl.procedures import prepare_seed, prepare_logger
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, get_search_spaces
from nats_bench import create
from models import CellStructure, get_search_spaces
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
import ConfigSpace

View File

@ -12,25 +12,47 @@ import numpy as np, collections
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import (
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, SearchDataset
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_search_spaces
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, get_search_spaces
from nats_bench import create
from regularized_ea import random_topology_func, random_size_func
def random_topology_func(op_names, max_nodes=4):
# Return a random architecture
def random_architecture():
genotypes = []
for i in range(1, max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
op_name = random.choice(op_names)
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return CellStructure(genotypes)
return random_architecture
def random_size_func(info):
# Return a random architecture
def random_architecture():
channels = []
for i in range(info["numbers"]):
channels.append(str(random.choice(info["candidates"])))
return ":".join(channels)
return random_architecture
def main(xargs, api):

View File

@ -16,23 +16,19 @@ import numpy as np, collections
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import (
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, SearchDataset
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import CellStructure, get_search_spaces
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, get_search_spaces
from nats_bench import create

View File

@ -13,26 +13,22 @@
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
from torch.distributions import Categorical
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import (
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, SearchDataset
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import CellStructure, get_search_spaces
from xautodl.utils import get_model_infos, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, get_search_spaces
from nats_bench import create
@ -206,7 +202,6 @@ def main(xargs, api):
if __name__ == "__main__":
parser = argparse.ArgumentParser("The REINFORCE Algorithm")
parser.add_argument("--data_path", type=str, help="Path to dataset")
parser.add_argument(
"--dataset",
type=str,

View File

@ -30,23 +30,19 @@ import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import (
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, get_nas_search_loaders
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import count_parameters_in_MB, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from xautodl.utils import count_parameters_in_MB, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_cell_based_tiny_net, get_search_spaces
from nats_bench import create

View File

@ -31,23 +31,19 @@ import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import (
from xautodl.config_utils import load_config, dict2config, configure2str
from xautodl.datasets import get_datasets, get_nas_search_loaders
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
get_optim_scheduler,
)
from utils import count_parameters_in_MB, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from xautodl.utils import count_parameters_in_MB, obtain_accuracy
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
from xautodl.models import get_cell_based_tiny_net, get_search_spaces
from nats_bench import create

View File

@ -3,7 +3,6 @@
#####################################################
import os, time, copy, torch, pathlib
# modules in AutoDL
from xautodl import datasets
from xautodl.config_utils import load_config
from xautodl.procedures import prepare_seed, get_optim_scheduler
@ -83,7 +82,7 @@ def procedure(xloader, network, criterion, scheduler, optimizer, mode: str):
def evaluate_for_seed(
arch_config, opt_config, train_loader, valid_loaders, seed: int, logger
):
"""A modular function to train and evaluate a single network, using the given random seed and optimization config with the provided loaders."""
prepare_seed(seed) # random seed
net = get_cell_based_tiny_net(arch_config)
# net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num)