update README
This commit is contained in:
		| @@ -16,6 +16,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | |||||||
|  |  | ||||||
|  |  | ||||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||||
|  | In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | ||||||
|  |  | ||||||
| @@ -42,7 +43,8 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n | |||||||
|  |  | ||||||
| ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="550"> | <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||||
|  |  | ||||||
| Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | ||||||
| @@ -55,7 +57,7 @@ Searching codes come soon! | |||||||
|  |  | ||||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="450"> | <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="350"> | ||||||
|  |  | ||||||
| The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user