update GDAS and SETN

This commit is contained in:
D-X-Y 2019-11-05 23:35:28 +11:00
parent 7f13385f28
commit a84f483882
46 changed files with 2065 additions and 135 deletions

View File

@ -65,7 +65,10 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN 256 -1
```
Searching codes come soon!
The searching codes of SETN on a small search space:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
```
## [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465)
@ -88,7 +91,16 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
```
Searching codes come soon! A small example forward code segment for searching can be found in [this issue](https://github.com/D-X-Y/NAS-Projects/issues/12).
The GDAS searching codes on a small search space:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
```
The baseline searching codes are DARTS:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
```
## [Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification](https://arxiv.org/abs/1903.09776)

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.0"],
"epochs" : ["int", "200"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.1"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "256"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.0"],
"epochs" : ["int", "200"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.1"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "256"]
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "50"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "50"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "240"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "25"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "150"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "400"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"LR" : ["float", "0.025"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "64"]
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

252
exps/algos/DARTS-V1.py Normal file
View File

@ -0,0 +1,252 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
w_optimizer.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 5)
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update (base_prec1.item(), base_inputs.size(0))
base_top5.update (base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
a_optimizer.zero_grad()
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
arch_loss.backward()
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
config_path = 'configs/nas-benchmark/algos/DARTS.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
search_model = get_cell_based_tiny_net(model_config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
valid_accuracies = checkpoint['valid_accuracies']
search_model.load_state_dict( checkpoint['search_model'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
if valid_a_top1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_a_top1
genotypes['best'] = search_model.genotype()
find_best = True
else: find_best = False
genotypes[epoch] = search_model.genotype()
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'search_model': search_model.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
#if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
# logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
#else:
# nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset)
# geno = genotypes[total_epoch-1]
# logger.log('The last model is {:}'.format(geno))
# info = nas_bench.query_by_arch( geno )
# if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
# else : logger.log('{:}'.format(info))
# logger.log('-'*100)
# geno = genotypes['best']
# logger.log('The best model is {:}'.format(geno))
# info = nas_bench.query_by_arch( geno )
# if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
# else : logger.log('{:}'.format(info))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("DARTS first order")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
# architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)

319
exps/algos/DARTS-V2.py Normal file
View File

@ -0,0 +1,319 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
def _hessian_vector_product(vector, network, criterion, base_inputs, base_targets, r=1e-2):
R = r / _concat(vector).norm()
for p, v in zip(network.module.get_weights(), vector):
p.data.add_(R, v)
_, logits = network(base_inputs)
loss = criterion(logits, base_targets)
grads_p = torch.autograd.grad(loss, network.module.get_alphas())
for p, v in zip(network.module.get_weights(), vector):
p.data.sub_(2*R, v)
_, logits = network(base_inputs)
loss = criterion(logits, base_targets)
grads_n = torch.autograd.grad(loss, network.module.get_alphas())
for p, v in zip(network.module.get_weights(), vector):
p.data.add_(R, v)
return [(x-y).div_(2*R) for x, y in zip(grads_p, grads_n)]
def backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets):
# _compute_unrolled_model
_, logits = network(base_inputs)
loss = criterion(logits, base_targets)
LR, WD, momentum = w_optimizer.param_groups[0]['lr'], w_optimizer.param_groups[0]['weight_decay'], w_optimizer.param_groups[0]['momentum']
with torch.no_grad():
theta = _concat(network.module.get_weights())
try:
moment = _concat(w_optimizer.state[v]['momentum_buffer'] for v in network.module.get_weights())
moment = moment.mul_(momentum)
except:
moment = torch.zeros_like(theta)
dtheta = _concat(torch.autograd.grad(loss, network.module.get_weights())) + WD*theta
params = theta.sub(LR, moment+dtheta)
unrolled_model = deepcopy(network)
model_dict = unrolled_model.state_dict()
new_params, offset = {}, 0
for k, v in network.named_parameters():
if 'arch_parameters' in k: continue
v_length = np.prod(v.size())
new_params[k] = params[offset: offset+v_length].view(v.size())
offset += v_length
model_dict.update(new_params)
unrolled_model.load_state_dict(model_dict)
unrolled_model.zero_grad()
_, unrolled_logits = unrolled_model(arch_inputs)
unrolled_loss = criterion(unrolled_logits, arch_targets)
unrolled_loss.backward()
dalpha = unrolled_model.module.arch_parameters.grad
vector = [v.grad.data for v in unrolled_model.module.get_weights()]
[implicit_grads] = _hessian_vector_product(vector, network, criterion, base_inputs, base_targets)
dalpha.data.sub_(LR, implicit_grads.data)
if network.module.arch_parameters.grad is None:
network.module.arch_parameters.grad = deepcopy( dalpha )
else:
network.module.arch_parameters.grad.data.copy_( dalpha.data )
return unrolled_loss.detach(), unrolled_logits.detach()
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the architecture-weight
a_optimizer.zero_grad()
arch_loss, arch_logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets)
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(arch_logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# update the weights
w_optimizer.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 5)
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update (base_prec1.item(), base_inputs.size(0))
base_top5.update (base_prec5.item(), base_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
config_path = 'configs/nas-benchmark/algos/DARTS.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
search_model = get_cell_based_tiny_net(model_config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
valid_accuracies = checkpoint['valid_accuracies']
search_model.load_state_dict( checkpoint['search_model'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
min_LR = min(w_scheduler.get_lr())
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR))
search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
if valid_a_top1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_a_top1
genotypes['best'] = search_model.genotype()
find_best = True
else: find_best = False
genotypes[epoch] = search_model.genotype()
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'search_model': search_model.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
"""
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
else:
nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset)
geno = genotypes[total_epoch-1]
logger.log('The last model is {:}'.format(geno))
info = nas_bench.query_by_arch( geno )
if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
else : logger.log('{:}'.format(info))
logger.log('-'*100)
geno = genotypes['best']
logger.log('The best model is {:}'.format(geno))
info = nas_bench.query_by_arch( geno )
if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
else : logger.log('{:}'.format(info))
"""
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("DARTS Second Order")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
# architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)

224
exps/algos/GDAS.py Normal file
View File

@ -0,0 +1,224 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
w_optimizer.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), 5)
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update (base_prec1.item(), base_inputs.size(0))
base_top5.update (base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
a_optimizer.zero_grad()
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
arch_loss.backward()
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, _, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
config_path = 'configs/nas-benchmark/algos/GDAS.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
search_model = get_cell_based_tiny_net(model_config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
logger.log('search_space : {:}'.format(search_space))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
valid_accuracies = checkpoint['valid_accuracies']
search_model.load_state_dict( checkpoint['search_model'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
search_model.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) )
logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format(epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr())))
search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
logger.log('[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss , valid_a_top1 , valid_a_top5 ))
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
if valid_a_top1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_a_top1
genotypes['best'] = search_model.genotype()
find_best = True
else: find_best = False
genotypes[epoch] = search_model.genotype()
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'search_model': search_model.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
"""
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
else:
nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset)
geno = genotypes[total_epoch-1]
logger.log('The last model is {:}'.format(geno))
info = nas_bench.query_by_arch( geno )
if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
else : logger.log('{:}'.format(info))
logger.log('-'*100)
"""
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("GDAS")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
# architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
parser.add_argument('--tau_min', type=float, help='The minimum tau for Gumbel')
parser.add_argument('--tau_max', type=float, help='The maximum tau for Gumbel')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)

281
exps/algos/SETN.py Normal file
View File

@ -0,0 +1,281 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
##################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
base_targets = base_targets.cuda(non_blocking=True)
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# update the weights
network.module.set_cal_mode( 'urs' )
w_optimizer.zero_grad()
_, logits = network(base_inputs)
base_loss = criterion(logits, base_targets)
base_loss.backward()
w_optimizer.step()
# record
base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
base_losses.update(base_loss.item(), base_inputs.size(0))
base_top1.update (base_prec1.item(), base_inputs.size(0))
base_top5.update (base_prec5.item(), base_inputs.size(0))
# update the architecture-weight
network.module.set_cal_mode( 'joint' )
a_optimizer.zero_grad()
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
arch_loss.backward()
a_optimizer.step()
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
Astr = 'Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=arch_losses, top1=arch_top1, top5=arch_top5)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Astr)
return base_losses.avg, base_top1.avg, base_top5.avg
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.train()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
config_path = 'configs/nas-benchmark/algos/SETN.config'
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
search_model = get_cell_based_tiny_net(model_config)
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
valid_accuracies = checkpoint['valid_accuracies']
search_model.load_state_dict( checkpoint['search_model'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
search_model.set_cal_mode('urs')
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
search_model.set_cal_mode('joint')
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
search_model.set_cal_mode('select')
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
# check the best accuracy
valid_accuracies[epoch] = valid_a_top1
if valid_a_top1 > valid_accuracies['best']:
valid_accuracies['best'] = valid_a_top1
genotypes['best'] = search_model.genotype()
find_best = True
else: find_best = False
genotypes[epoch] = search_model.genotype()
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'search_model': search_model.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# sampling
with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
selected_archs = set()
while len(selected_archs) < xargs.select_num:
architecture = search_model.dync_genotype()
selected_archs.add( architecture )
logger.log('select {:} architectures based on the learned arch-parameters'.format( len(selected_archs) ))
best_arch, best_acc = None, -1
state_dict = deepcopy( network.state_dict() )
for index, arch in enumerate(selected_archs):
with torch.no_grad():
search_model.set_cal_mode('dynamic', arch)
network.load_state_dict( deepcopy(state_dict) )
valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion)
logger.log('{:} [{:03d}/{:03d}] : {:125s}, loss={:.3f}, accuracy={:.3f}%'.format(time_string(), index, len(selected_archs), str(arch), valid_a_loss , valid_a_top1))
if best_arch is None or best_acc < valid_a_top1:
best_arch, best_acc = arch, valid_a_top1
logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(best_arch, best_acc))
logger.log('\n' + '-'*100)
# check the performance from the architecture dataset
"""
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
else:
nas_bench = TinyNASBenchmarkAPI(xargs.arch_nas_dataset)
geno = best_arch
logger.log('The last model is {:}'.format(geno))
info = nas_bench.query_by_arch( geno )
if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
else : logger.log('{:}'.format(info))
logger.log('-'*100)
"""
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("SETN")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--select_num', type=int, help='The number of selected architectures to evaluate.')
# architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)

View File

@ -12,7 +12,7 @@ class SearchDataset(data.Dataset):
self.length = len(self.train_split)
def __repr__(self):
return ('{name}(name={datasetname}, length={length})'.format(name=self.__class__.__name__, **self.__dict__))
return ('{name}(name={datasetname}, train={tr_L}, valid={val_L})'.format(name=self.__class__.__name__, tr_L=len(self.train_split), val_L=len(self.valid_split)))
def __len__(self):
return self.length

View File

@ -3,11 +3,36 @@
##################################################
import torch
from os import path as osp
# our modules
# useful modules
from config_utils import dict2config
from .SharedUtils import change_key
from .clone_weights import init_from_model
# Cell-based NAS Models
def get_cell_based_tiny_net(config):
if config.name == 'DARTS-V1':
from .cell_searchs import TinyNetworkDartsV1
return TinyNetworkDartsV1(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'DARTS-V2':
from .cell_searchs import TinyNetworkDartsV2
return TinyNetworkDartsV2(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'GDAS':
from .cell_searchs import TinyNetworkGDAS
return TinyNetworkGDAS(config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif config.name == 'SETN':
from .cell_searchs import TinyNetworkSETN
return TinyNetworkSETN(config.C, config.N, config.max_nodes, config.num_classes, config.space)
else:
raise ValueError('invalid network name : {:}'.format(config.name))
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
def get_search_spaces(xtype, name):
if xtype == 'cell':
from .cell_operations import SearchSpaceNames
return SearchSpaceNames[name]
else:
raise ValueError('invalid search-space type is {:}'.format(xtype))
def get_cifar_models(config):
from .CifarResNet import CifarResNet
@ -22,9 +47,9 @@ def get_cifar_models(config):
else:
raise ValueError('invalid module type : {:}'.format(config.arch))
elif super_type.startswith('infer'):
from .infers import InferWidthCifarResNet
from .infers import InferDepthCifarResNet
from .infers import InferCifarResNet
from .shape_infers import InferWidthCifarResNet
from .shape_infers import InferDepthCifarResNet
from .shape_infers import InferCifarResNet
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'width':
@ -46,8 +71,8 @@ def get_imagenet_models(config):
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'shape':
from .infers import InferImagenetResNet
from .infers import InferMobileNetV2
from .shape_infers import InferImagenetResNet
from .shape_infers import InferMobileNetV2
if config.arch == 'resnet':
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
elif config.arch == "MobileNetV2":
@ -72,9 +97,9 @@ def obtain_model(config):
def obtain_search_model(config):
if config.dataset == 'cifar':
if config.arch == 'resnet':
from .searchs import SearchWidthCifarResNet
from .searchs import SearchDepthCifarResNet
from .searchs import SearchShapeCifarResNet
from .shape_searchs import SearchWidthCifarResNet
from .shape_searchs import SearchDepthCifarResNet
from .shape_searchs import SearchShapeCifarResNet
if config.search_mode == 'width':
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'depth':
@ -85,7 +110,7 @@ def obtain_search_model(config):
else:
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
elif config.dataset == 'imagenet':
from .searchs import SearchShapeImagenetResNet
from .shape_searchs import SearchShapeImagenetResNet
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
if config.arch == 'resnet':
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)

View File

@ -1,7 +1,7 @@
import torch
import torch.nn as nn
__all__ = ['OPS', 'ReLUConvBN', 'SearchSpaceNames']
__all__ = ['OPS', 'ReLUConvBN', 'ResNetBasicblock', 'SearchSpaceNames']
OPS = {
'none' : lambda C_in, C_out, stride: Zero(C_in, C_out, stride),
@ -14,8 +14,60 @@ OPS = {
}
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
AA_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK}
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
'aa-nas' : AA_NAS_BENCHMARK}
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(C_out)
)
def forward(self, x):
return self.op(x)
class ResNetBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1)
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
elif inplanes != planes:
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def extra_repr(self):
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
return string
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock
class POOLING(nn.Module):
@ -36,20 +88,6 @@ class POOLING(nn.Module):
return self.op(x)
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(C_out)
)
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):

View File

@ -0,0 +1,4 @@
from .search_model_darts_v1 import TinyNetworkDartsV1
from .search_model_darts_v2 import TinyNetworkDartsV2
from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN

View File

@ -2,7 +2,7 @@ import math, torch
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from .operations import OPS, ReLUConvBN
from ..cell_operations import OPS
class SearchCell(nn.Module):
@ -113,84 +113,3 @@ class SearchCell(nn.Module):
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
class InferCell(nn.Module):
def __init__(self, genotype, C_in, C_out, stride):
super(InferCell, self).__init__()
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i-1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](C_in , C_out, stride)
else:
layer = OPS[op_name](C_out, C_out, 1)
cur_index.append( len(self.layers) )
cur_innod.append( op_in )
self.layers.append( layer )
self.node_IX.append( cur_index )
self.node_IN.append( cur_innod )
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
def extra_repr(self):
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
x = '{:}<-({:})'.format(i+1, ','.join(y))
laystr.append( x )
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
nodes.append( node_feature )
return nodes[-1]
class ResNetBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1)
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
elif inplanes != planes:
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def extra_repr(self):
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
return string
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock

View File

@ -0,0 +1,158 @@
from copy import deepcopy
def get_combination(space, num):
combs = []
for i in range(num):
if i == 0:
for func in space:
combs.append( [(func, i)] )
else:
new_combs = []
for string in combs:
for func in space:
xstring = string + [(func, i)]
new_combs.append( xstring )
combs = new_combs
return combs
class Structure:
def __init__(self, genotype):
assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype))
self.node_num = len(genotype) + 1
self.nodes = []
self.node_N = []
for idx, node_info in enumerate(genotype):
assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info))
assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info))
for node_in in node_info:
assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in))
assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in)
self.node_N.append( len(node_info) )
self.nodes.append( tuple(deepcopy(node_info)) )
def tolist(self, remove_str):
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
# note that we re-order the input node in this function
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
genotypes = []
for node_info in self.nodes:
node_info = list( node_info )
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
if len(node_info) == 0: return None, False
genotypes.append( node_info )
return genotypes, True
def node(self, index):
assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self))
return self.nodes[index]
def tostr(self):
strings = []
for node_info in self.nodes:
string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info])
string = '|{:}|'.format(string)
strings.append( string )
return '+'.join(strings)
def __repr__(self):
return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__))
def __len__(self):
return len(self.nodes) + 1
def __getitem__(self, index):
return self.nodes[index]
@staticmethod
def str2structure(xstr):
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
genotypes.append( input_infos )
return Structure( genotypes )
@staticmethod
def str2fullstructure(xstr, default_name='none'):
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = list( (op, int(IDX)) for (op, IDX) in inputs)
all_in_nodes= list(x[1] for x in input_infos)
for j in range(i):
if j not in all_in_nodes: input_infos.append((default_name, j))
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
genotypes.append( tuple(node_info) )
return Structure( genotypes )
@staticmethod
def gen_all(search_space, num, return_ori):
assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space))
assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num)
all_archs = get_combination(search_space, 1)
for i, arch in enumerate(all_archs):
all_archs[i] = [ tuple(arch) ]
for inode in range(2, num):
cur_nodes = get_combination(search_space, inode)
new_all_archs = []
for previous_arch in all_archs:
for cur_node in cur_nodes:
new_all_archs.append( previous_arch + [tuple(cur_node)] )
all_archs = new_all_archs
if return_ori:
return all_archs
else:
return [Structure(x) for x in all_archs]
ResNet_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 1), ), # node-2
(('skip_connect', 0), ('skip_connect', 2))] # node-3
)
AllConv3x3_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3
)
AllFull_CODE = Structure(
[(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3
)
AllConv1x1_CODE = Structure(
[(('nor_conv_1x1', 0), ), # node-1
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3
)
AllIdentity_CODE = Structure(
[(('skip_connect', 0), ), # node-1
(('skip_connect', 0), ('skip_connect', 1)), # node-2
(('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3
)
architectures = {'resnet' : ResNet_CODE,
'all_c3x3': AllConv3x3_CODE,
'all_c1x1': AllConv1x1_CODE,
'all_idnt': AllIdentity_CODE,
'all_full': AllFull_CODE}

View File

@ -0,0 +1,134 @@
import math, random, torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from ..cell_operations import OPS
class SearchCell(nn.Module):
def __init__(self, C_in, C_out, stride, max_nodes, op_names):
super(SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if j == 0:
xlists = [OPS[op_name](C_in , C_out, stride) for op_name in op_names]
else:
xlists = [OPS[op_name](C_in , C_out, 1) for op_name in op_names]
self.edges[ node_str ] = nn.ModuleList( xlists )
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def extra_repr(self):
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
return string
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, alphas, _tau):
avoid_zero = 0
while True:
gumbels = -torch.empty_like(alphas).exponential_().log()
logits = (alphas.log_softmax(dim=1) + gumbels) / _tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue # avoid the numerical error
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = hardwts[ self.edge2index[node_str] ]
argmaxs = index[ self.edge2index[node_str] ].item()
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
inter_nodes.append( weigsum )
nodes.append( sum(inter_nodes) )
avoid_zero += 1
if nodes[-1].sum().item() == 0:
if avoid_zero < 10: continue
else:
warnings.warn('get zero outputs with avoid_zero={:}'.format(avoid_zero))
break
else:
break
return nodes[-1]
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
inter_nodes.append( aggregation )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# uniform random sampling per iteration
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append( select_op )
if not hasattr(select_op, 'is_zero') or select_op.is_zero == False: has_non_zero=True
if has_non_zero: break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append( select_op(nodes[j]) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i-1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = '{:}<-{:}'.format(i, j)
op_index = self.op_names.index( op_name )
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]

View File

@ -0,0 +1,93 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
########################################################
# DARTS: Differentiable Architecture Search, ICLR 2019 #
########################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell
from .genotypes import Structure
class TinyNetworkDartsV1(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space):
super(TinyNetworkDartsV1, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell(feature, alphas)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@ -0,0 +1,93 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
########################################################
# DARTS: Differentiable Architecture Search, ICLR 2019 #
########################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell
from .genotypes import Structure
class TinyNetworkDartsV2(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space):
super(TinyNetworkDartsV2, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell(feature, alphas)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@ -6,9 +6,9 @@
import torch
import torch.nn as nn
from copy import deepcopy
from .infer_cells import ResNetBasicblock
from .search_cells import SearchCell
from .genotypes import Structure
from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell
from .genotypes import Structure
class TinyNetworkGDAS(nn.Module):
@ -44,7 +44,6 @@ class TinyNetworkGDAS(nn.Module):
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
self.nan_count = 0
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
@ -52,9 +51,8 @@ class TinyNetworkGDAS(nn.Module):
xlist+= list( self.classifier.parameters() )
return xlist
def set_tau(self, tau, _nan_count=0):
def set_tau(self, tau):
self.tau = tau
self.nan_count = _nan_count
def get_tau(self):
return self.tau
@ -85,27 +83,10 @@ class TinyNetworkGDAS(nn.Module):
return Structure( genotypes )
def forward(self, inputs):
def gumbel_softmax(_logits, _tau):
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(_logits).exponential_().log()
new_logits = (_logits.log_softmax(dim=1) + gumbels) / _tau
probs = nn.functional.softmax(new_logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
if index[0].item() == self.op_names.index('none') and index[3].item() == self.op_names.index('none') and index[5].item() == self.op_names.index('none'): continue
if index[1].item() == self.op_names.index('none') and index[2].item() == self.op_names.index('none') and index[3].item() == self.op_names.index('none') and index[4].item() == self.op_names.index('none'): continue
if index[3].item() == self.op_names.index('none') and index[4].item() == self.op_names.index('none') and index[5].item() == self.op_names.index('none'): continue
if index[3].item() == self.op_names.index('none') and index[0].item() == self.op_names.index('none') and index[1].item() == self.op_names.index('none'): continue
one_h = torch.zeros_like(_logits).scatter_(-1, index, 1.0)
xres = one_h - probs.detach() + probs
if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break
self.nan_count += 1
return xres, index
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
alphas, IDX = gumbel_softmax(self.arch_parameters, self.tau)
feature = cell.forward_gdas(feature, alphas, IDX.cpu())
feature = cell.forward_gdas(feature, self.arch_parameters, self.tau)
else:
feature = cell(feature)

View File

@ -0,0 +1,130 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
######################################################################################
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
######################################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell
from .genotypes import Structure
class TinyNetworkSETN(nn.Module):
def __init__(self, C, N, max_nodes, num_classes, search_space):
super(TinyNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.mode = 'urs'
self.dynamic_cell = None
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['urs', 'joint', 'select', 'dynamic']
self.mode = mode
if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell )
else : self.dynamic_cell = None
def get_cal_mode(self):
return self.mode
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def dync_genotype(self):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
if self.mode == 'urs':
feature = cell.forward_urs(feature)
elif self.mode == 'select':
feature = cell.forward_select(feature, alphas_cpu)
elif self.mode == 'joint':
feature = cell.forward_joint(feature, alphas)
elif self.mode == 'dynamic':
feature = cell.forward_dynamic(feature, self.dynamic_cell)
else: raise ValueError('invalid mode={:}'.format(self.mode))
else: feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@ -0,0 +1,36 @@
#!/bin/bash
# bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for dataset and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
seed=$2
channel=16
num_cells=5
max_nodes=4
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/cell-search-tiny/DARTS-V1-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name aa-nas \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}

View File

@ -0,0 +1,36 @@
#!/bin/bash
# bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for dataset and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
seed=$2
channel=16
num_cells=5
max_nodes=4
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/cell-search-tiny/DARTS-V2-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V2.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name aa-nas \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}

View File

@ -0,0 +1,37 @@
#!/bin/bash
# bash ./scripts-search/algos/GDAS.sh cifar10 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for dataset and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
seed=$2
channel=16
num_cells=5
max_nodes=4
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/cell-search-tiny/GDAS-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name aa-nas \
--tau_max 10 --tau_min 0.1 \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}

View File

@ -0,0 +1,38 @@
#!/bin/bash
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
# bash ./scripts-search/scripts/algos/SETN.sh cifar10 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for dataset and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
seed=$2
channel=16
num_cells=5
max_nodes=4
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/cell-search-tiny/SETN-${dataset}
OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name aa-nas \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--select_num 100 \
--workers 4 --print_freq 200 --rand_seed ${seed}