From a867ea5209dfd6e95d4f6b02195bd00ce8de4a9b Mon Sep 17 00:00:00 2001 From: D-X-Y <280835372@qq.com> Date: Thu, 25 Feb 2021 00:24:56 -0800 Subject: [PATCH] Start prototype --- .gitignore | 3 +- .latent-data/init-configs/vimrc | 4 +- exps/trading/test-qlib.py | 3 - exps/trading/workflow_test.py | 94 ++++++ lib/layers/__init__.py | 2 + lib/layers/drop.py | 169 ++++++++++ lib/layers/weight_init.py | 61 ++++ lib/trade_models/__init__.py | 1 + lib/trade_models/quant_transformer.py | 461 ++++++++++++++++++++++++++ 9 files changed, 792 insertions(+), 6 deletions(-) delete mode 100644 exps/trading/test-qlib.py create mode 100644 exps/trading/workflow_test.py create mode 100644 lib/layers/__init__.py create mode 100644 lib/layers/drop.py create mode 100644 lib/layers/weight_init.py create mode 100644 lib/trade_models/__init__.py create mode 100755 lib/trade_models/quant_transformer.py diff --git a/.gitignore b/.gitignore index c705264..8d5cec0 100644 --- a/.gitignore +++ b/.gitignore @@ -127,4 +127,5 @@ TEMP-L.sh */*.swo # Visual Studio Code -.vscode \ No newline at end of file +.vscode +mlruns diff --git a/.latent-data/init-configs/vimrc b/.latent-data/init-configs/vimrc index d139c97..c843e86 100644 --- a/.latent-data/init-configs/vimrc +++ b/.latent-data/init-configs/vimrc @@ -1,4 +1,4 @@ -color desert +color desert "设置背景色,每种配色有两种方案,一个light、一个dark "set background=light ""打开语法高亮 @@ -16,7 +16,7 @@ endif "显示行号 "set number ""设置缩进有三个取值cindent(c风格)、smartindent(智能模式,其实不觉得有什么智能)、autoindent(简单的与上一行保持一致) -set cindent +set autoindent "在windows版本中vim的退格键模式默认与vi兼容,与我们的使用习惯不太符合,下边这条可以改过来 "set backspace=indent,eol,start ""用空格键替换制表符 diff --git a/exps/trading/test-qlib.py b/exps/trading/test-qlib.py deleted file mode 100644 index 8ba0624..0000000 --- a/exps/trading/test-qlib.py +++ /dev/null @@ -1,3 +0,0 @@ -import os - -print('xxx123') \ No newline at end of file diff --git a/exps/trading/workflow_test.py b/exps/trading/workflow_test.py new file mode 100644 index 0000000..e9f98e0 --- /dev/null +++ b/exps/trading/workflow_test.py @@ -0,0 +1,94 @@ +##################################################### +# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # +##################################################### +# Refer to: +# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb +# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py +# python exps/trading/workflow_test.py +##################################################### +import sys, site +from pathlib import Path + +lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() +if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) + +import qlib +import pandas as pd +from qlib.config import REG_CN +from qlib.contrib.model.gbdt import LGBModel +from qlib.contrib.data.handler import Alpha158 +from qlib.contrib.strategy.strategy import TopkDropoutStrategy +from qlib.contrib.evaluate import ( + backtest as normal_backtest, + risk_analysis, +) +from qlib.utils import exists_qlib_data, init_instance_by_config +from qlib.workflow import R +from qlib.workflow.record_temp import SignalRecord, PortAnaRecord +from qlib.utils import flatten_dict + + +# use default data +# NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data +provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir +if not exists_qlib_data(provider_uri): + print(f"Qlib data is not found in {provider_uri}") + sys.path.append(str(scripts_dir)) + from get_data import GetData + GetData().qlib_data(target_dir=provider_uri, region=REG_CN) +qlib.init(provider_uri=provider_uri, region=REG_CN) + + +market = "csi300" +benchmark = "SH000300" + + +################################### +# train model +################################### +data_handler_config = { + "start_time": "2008-01-01", + "end_time": "2020-08-01", + "fit_start_time": "2008-01-01", + "fit_end_time": "2014-12-31", + "instruments": market, +} + +task = { + "model": { + "class": "QuantTransformer", + "module_path": "trade_models", + "kwargs": { + "loss": "mse", + "GPU": "0", + "metric": "loss", + }, + }, + "dataset": { + "class": "DatasetH", + "module_path": "qlib.data.dataset", + "kwargs": { + "handler": { + "class": "Alpha158", + "module_path": "qlib.contrib.data.handler", + "kwargs": data_handler_config, + }, + "segments": { + "train": ("2008-01-01", "2014-12-31"), + "valid": ("2015-01-01", "2016-12-31"), + "test": ("2017-01-01", "2020-08-01"), + }, + }, + }, +} + +# model initiaiton +model = init_instance_by_config(task["model"]) +dataset = init_instance_by_config(task["dataset"]) + +# start exp to train model +with R.start(experiment_name="train_model"): + R.log_params(**flatten_dict(task)) + model.fit(dataset) + R.save_objects(trained_model=model) + rid = R.get_recorder().id diff --git a/lib/layers/__init__.py b/lib/layers/__init__.py new file mode 100644 index 0000000..21bca49 --- /dev/null +++ b/lib/layers/__init__.py @@ -0,0 +1,2 @@ +from .drop import DropBlock2d, DropPath +from .weight_init import trunc_normal_ diff --git a/lib/layers/drop.py b/lib/layers/drop.py new file mode 100644 index 0000000..f9ebef7 --- /dev/null +++ b/lib/layers/drop.py @@ -0,0 +1,169 @@ +""" Borrowed from https://github.com/rwightman/pytorch-image-models +DropBlock, DropPath + +PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. + +Papers: +DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) + +Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) + +Code: +DropBlock impl inspired by two Tensorflow impl that I liked: + - https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 + - https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py + +Hacked together by / Copyright 2020 Ross Wightman +""" +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def drop_block_2d( + x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, + with_noise: bool = False, inplace: bool = False, batchwise: bool = False): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. This layer has been tested on a few training + runs with success, but needs further validation and possibly optimization for lower runtime impact. + """ + B, C, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + # seed_drop_rate, the gamma parameter + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( + (W - block_size + 1) * (H - block_size + 1)) + + # Forces the block to be inside the feature map. + w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device)) + valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ + ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) + valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) + + if batchwise: + # one mask for whole batch, quite a bit faster + uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) + else: + uniform_noise = torch.rand_like(x) + block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) + block_mask = -F.max_pool2d( + -block_mask, + kernel_size=clipped_block_size, # block_size, + stride=1, + padding=clipped_block_size // 2) + + if with_noise: + normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) + if inplace: + x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) + else: + x = x * block_mask + normal_noise * (1 - block_mask) + else: + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +def drop_block_fast_2d( + x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, + gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + + DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid + block mask at edges. + """ + B, C, H, W = x.shape + total_size = W * H + clipped_block_size = min(block_size, min(W, H)) + gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( + (W - block_size + 1) * (H - block_size + 1)) + + if batchwise: + # one mask for whole batch, quite a bit faster + block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma + else: + # mask per batch element + block_mask = torch.rand_like(x) < gamma + block_mask = F.max_pool2d( + block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) + + if with_noise: + normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) + if inplace: + x.mul_(1. - block_mask).add_(normal_noise * block_mask) + else: + x = x * (1. - block_mask) + normal_noise * block_mask + else: + block_mask = 1 - block_mask + normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) + if inplace: + x.mul_(block_mask * normalize_scale) + else: + x = x * block_mask * normalize_scale + return x + + +class DropBlock2d(nn.Module): + """ DropBlock. See https://arxiv.org/pdf/1810.12890.pdf + """ + def __init__(self, + drop_prob=0.1, + block_size=7, + gamma_scale=1.0, + with_noise=False, + inplace=False, + batchwise=False, + fast=True): + super(DropBlock2d, self).__init__() + self.drop_prob = drop_prob + self.gamma_scale = gamma_scale + self.block_size = block_size + self.with_noise = with_noise + self.inplace = inplace + self.batchwise = batchwise + self.fast = fast # FIXME finish comparisons of fast vs not + + def forward(self, x): + if not self.training or not self.drop_prob: + return x + if self.fast: + return drop_block_fast_2d( + x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) + else: + return drop_block_2d( + x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) + + +def drop_path(x, drop_prob: float = 0., training: bool = False): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, + the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for + changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use + 'survival rate' as the argument. + + """ + if drop_prob == 0. or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) + random_tensor.floor_() # binarize + output = x.div(keep_prob) * random_tensor + return output + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) diff --git a/lib/layers/weight_init.py b/lib/layers/weight_init.py new file mode 100644 index 0000000..a70904b --- /dev/null +++ b/lib/layers/weight_init.py @@ -0,0 +1,61 @@ +# Borrowed from https://github.com/rwightman/pytorch-image-models +import torch +import math +import warnings + + +def _no_grad_trunc_normal_(tensor, mean, std, a, b): + # Cut & paste from PyTorch official master until it's in a few official releases - RW + # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf + def norm_cdf(x): + # Computes standard normal cumulative distribution function + return (1. + math.erf(x / math.sqrt(2.))) / 2. + + if (mean < a - 2 * std) or (mean > b + 2 * std): + warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " + "The distribution of values may be incorrect.", + stacklevel=2) + + with torch.no_grad(): + # Values are generated by using a truncated uniform distribution and + # then using the inverse CDF for the normal distribution. + # Get upper and lower cdf values + l = norm_cdf((a - mean) / std) + u = norm_cdf((b - mean) / std) + + # Uniformly fill tensor with values from [l, u], then translate to + # [2l-1, 2u-1]. + tensor.uniform_(2 * l - 1, 2 * u - 1) + + # Use inverse cdf transform for normal distribution to get truncated + # standard normal + tensor.erfinv_() + + # Transform to proper mean, std + tensor.mul_(std * math.sqrt(2.)) + tensor.add_(mean) + + # Clamp to ensure it's in the proper range + tensor.clamp_(min=a, max=b) + return tensor + + +def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): + # type: (Tensor, float, float, float, float) -> Tensor + r"""Fills the input Tensor with values drawn from a truncated + normal distribution. The values are effectively drawn from the + normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` + with values outside :math:`[a, b]` redrawn until they are within + the bounds. The method used for generating the random values works + best when :math:`a \leq \text{mean} \leq b`. + Args: + tensor: an n-dimensional `torch.Tensor` + mean: the mean of the normal distribution + std: the standard deviation of the normal distribution + a: the minimum cutoff value + b: the maximum cutoff value + Examples: + >>> w = torch.empty(3, 5) + >>> nn.init.trunc_normal_(w) + """ + return _no_grad_trunc_normal_(tensor, mean, std, a, b) diff --git a/lib/trade_models/__init__.py b/lib/trade_models/__init__.py new file mode 100644 index 0000000..ee0721e --- /dev/null +++ b/lib/trade_models/__init__.py @@ -0,0 +1 @@ +from .quant_transformer import QuantTransformer diff --git a/lib/trade_models/quant_transformer.py b/lib/trade_models/quant_transformer.py new file mode 100755 index 0000000..fb0c43c --- /dev/null +++ b/lib/trade_models/quant_transformer.py @@ -0,0 +1,461 @@ +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. + + +from __future__ import division +from __future__ import print_function + +import os +import numpy as np +import pandas as pd +import copy +from functools import partial +from sklearn.metrics import roc_auc_score, mean_squared_error +from typing import Optional +import logging + +from qlib.utils import ( + unpack_archive_with_buffer, + save_multiple_parts_file, + create_save_path, + drop_nan_by_y_index, +) +from qlib.log import get_module_logger, TimeInspector + +import torch +import torch.nn as nn +import torch.optim as optim + +from layers import DropPath, trunc_normal_ + +from qlib.model.base import Model +from qlib.data.dataset import DatasetH +from qlib.data.dataset.handler import DataHandlerLP + + +class QuantTransformer(Model): + """Transformer-based Quant Model + + """ + + def __init__( + self, + d_feat=6, + hidden_size=64, + num_layers=2, + dropout=0.0, + n_epochs=200, + lr=0.001, + metric="", + batch_size=2000, + early_stop=20, + loss="mse", + optimizer="adam", + GPU=0, + seed=None, + **kwargs + ): + # Set logger. + self.logger = get_module_logger("QuantTransformer") + self.logger.info("QuantTransformer pytorch version...") + + # set hyper-parameters. + self.d_feat = d_feat + self.hidden_size = hidden_size + self.num_layers = num_layers + self.dropout = dropout + self.n_epochs = n_epochs + self.lr = lr + self.metric = metric + self.batch_size = batch_size + self.early_stop = early_stop + self.optimizer = optimizer.lower() + self.loss = loss + self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu") + self.use_gpu = torch.cuda.is_available() + self.seed = seed + + self.logger.info( + "GRU parameters setting:" + "\nd_feat : {}" + "\nhidden_size : {}" + "\nnum_layers : {}" + "\ndropout : {}" + "\nn_epochs : {}" + "\nlr : {}" + "\nmetric : {}" + "\nbatch_size : {}" + "\nearly_stop : {}" + "\noptimizer : {}" + "\nloss_type : {}" + "\nvisible_GPU : {}" + "\nuse_GPU : {}" + "\nseed : {}".format( + d_feat, + hidden_size, + num_layers, + dropout, + n_epochs, + lr, + metric, + batch_size, + early_stop, + optimizer.lower(), + loss, + GPU, + self.use_gpu, + seed, + ) + ) + + if self.seed is not None: + np.random.seed(self.seed) + torch.manual_seed(self.seed) + + self.model = TransformerModel(d_feat=self.d_feat) + if optimizer.lower() == "adam": + self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr) + elif optimizer.lower() == "gd": + self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr) + else: + raise NotImplementedError("optimizer {:} is not supported!".format(optimizer)) + + self.fitted = False + self.model.to(self.device) + + def mse(self, pred, label): + loss = (pred - label) ** 2 + return torch.mean(loss) + + def loss_fn(self, pred, label): + mask = ~torch.isnan(label) + + if self.loss == "mse": + return self.mse(pred[mask], label[mask]) + + raise ValueError("unknown loss `%s`" % self.loss) + + def metric_fn(self, pred, label): + + mask = torch.isfinite(label) + + if self.metric == "" or self.metric == "loss": + return -self.loss_fn(pred[mask], label[mask]) + + raise ValueError("unknown metric `%s`" % self.metric) + + def train_epoch(self, x_train, y_train): + + x_train_values = x_train.values + y_train_values = np.squeeze(y_train.values) + + self.model.train() + + indices = np.arange(len(x_train_values)) + np.random.shuffle(indices) + + for i in range(len(indices))[:: self.batch_size]: + + if len(indices) - i < self.batch_size: + break + + feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device) + label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device) + + pred = self.model(feature) + loss = self.loss_fn(pred, label) + + self.train_optimizer.zero_grad() + loss.backward() + torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0) + self.train_optimizer.step() + + def test_epoch(self, data_x, data_y): + + # prepare training data + x_values = data_x.values + y_values = np.squeeze(data_y.values) + + self.model.eval() + + scores = [] + losses = [] + + indices = np.arange(len(x_values)) + import pdb; pdb.set_trace() + + for i in range(len(indices))[:: self.batch_size]: + + if len(indices) - i < self.batch_size: + break + + feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device) + label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device) + + pred = self.model(feature) + loss = self.loss_fn(pred, label) + losses.append(loss.item()) + + score = self.metric_fn(pred, label) + scores.append(score.item()) + + return np.mean(losses), np.mean(scores) + + def fit( + self, + dataset: DatasetH, + evals_result=dict(), + verbose=True, + save_path=None, + ): + + df_train, df_valid, df_test = dataset.prepare( + ["train", "valid", "test"], + col_set=["feature", "label"], + data_key=DataHandlerLP.DK_L, + ) + + x_train, y_train = df_train["feature"], df_train["label"] + x_valid, y_valid = df_valid["feature"], df_valid["label"] + + if save_path == None: + save_path = create_save_path(save_path) + stop_steps = 0 + train_loss = 0 + best_score = -np.inf + best_epoch = 0 + evals_result["train"] = [] + evals_result["valid"] = [] + + # train + self.logger.info("training...") + self.fitted = True + + for step in range(self.n_epochs): + self.logger.info("Epoch%d:", step) + self.logger.info("training...") + self.train_epoch(x_train, y_train) + self.logger.info("evaluating...") + train_loss, train_score = self.test_epoch(x_train, y_train) + val_loss, val_score = self.test_epoch(x_valid, y_valid) + self.logger.info("train %.6f, valid %.6f" % (train_score, val_score)) + evals_result["train"].append(train_score) + evals_result["valid"].append(val_score) + + if val_score > best_score: + best_score = val_score + stop_steps = 0 + best_epoch = step + best_param = copy.deepcopy(self.model.state_dict()) + else: + stop_steps += 1 + if stop_steps >= self.early_stop: + self.logger.info("early stop") + break + + self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch)) + self.model.load_state_dict(best_param) + torch.save(best_param, save_path) + + if self.use_gpu: + torch.cuda.empty_cache() + + def predict(self, dataset): + if not self.fitted: + raise ValueError("model is not fitted yet!") + + x_test = dataset.prepare("test", col_set="feature") + index = x_test.index + self.model.eval() + x_values = x_test.values + sample_num = x_values.shape[0] + preds = [] + + for begin in range(sample_num)[:: self.batch_size]: + + if sample_num - begin < self.batch_size: + end = sample_num + else: + end = begin + self.batch_size + + x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) + + with torch.no_grad(): + if self.use_gpu: + pred = self.model(x_batch).detach().cpu().numpy() + else: + pred = self.model(x_batch).detach().numpy() + + preds.append(pred) + + return pd.Series(np.concatenate(preds), index=index) + + +# Real Model + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +class Attention(nn.Module): + def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights + self.scale = qk_scale or head_dim ** -0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x): + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + attn = (q @ k.transpose(-2, -1)) * self.scale + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + def forward(self, x): + x = x + self.drop_path(self.attn(self.norm1(x))) + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class SimpleEmbed(nn.Module): + + def __init__(self, d_feat, embed_dim): + super(SimpleEmbed, self).__init__() + self.proj = nn.Linear(d_feat, embed_dim) + + def forward(self, x): + import pdb; pdb.set_trace() + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) + return x + + +class TransformerModel(nn.Module): + def __init__(self, + d_feat: int, + embed_dim: int = 64, + depth: int = 4, + num_heads: int = 4, + mlp_ratio: float = 4., + qkv_bias: bool = True, + qk_scale: Optional[float] = None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): + """ + Args: + d_feat (int, tuple): input image size + embed_dim (int): embedding dimension + depth (int): depth of transformer + num_heads (int): number of attention heads + mlp_ratio (int): ratio of mlp hidden dim to embedding dim + qkv_bias (bool): enable bias for qkv if True + qk_scale (float): override default qk scale of head_dim ** -0.5 if set + drop_rate (float): dropout rate + attn_drop_rate (float): attention dropout rate + drop_path_rate (float): stochastic depth rate + norm_layer: (nn.Module): normalization layer + """ + super(TransformerModel, self).__init__() + self.embed_dim = embed_dim + self.num_features = embed_dim + norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) + + self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) + + """ + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + self.pos_drop = nn.Dropout(p=drop_rate) + """ + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) + for i in range(depth)]) + self.norm = norm_layer(embed_dim) + + # regression head + self.head = nn.Linear(self.num_features, 1) + + """ + trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.cls_token, std=.02) + """ + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def forward_features(self, x): + B = x.shape[0] + x = self.input_embed(x) + + cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + x = x + self.pos_embed + x = self.pos_drop(x) + + for blk in self.blocks: + x = blk(x) + + x = self.norm(x)[:, 0] + return x + + def forward(self, x): + x = self.forward_features(x) + x = self.head(x) + return x