Update NATS (sss) algorithms -- warmup
This commit is contained in:
		| @@ -1,6 +1,11 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ###################################################################################### | ||||
| # In this file, we aims to evaluate three kinds of channel searching strategies: | ||||
| # -  | ||||
| #### | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --warmup_ratio 0.25 | ||||
| #### | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777 | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777 | ||||
| # python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777 | ||||
| @@ -51,7 +56,7 @@ class ExponentialMovingAverage(object): | ||||
| RL_BASELINE_EMA = ExponentialMovingAverage(0.95) | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, algo, epoch_str, print_freq, logger): | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, enable_controller, algo, epoch_str, print_freq, logger): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
| @@ -80,6 +85,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|  | ||||
|     # update the architecture-weight | ||||
|     network.zero_grad() | ||||
|     a_optimizer.zero_grad() | ||||
|     _, logits, log_probs = network(arch_inputs) | ||||
|     arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|     if algo == 'tunas': | ||||
| @@ -92,6 +98,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|     else: | ||||
|       raise ValueError('invalid algorightm name: {:}'.format(algo)) | ||||
|     if enable_controller: | ||||
|       arch_loss.backward() | ||||
|       a_optimizer.step() | ||||
|     # record | ||||
| @@ -208,13 +215,22 @@ def main(xargs): | ||||
|     w_scheduler.update(epoch, 0.0) | ||||
|     need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.val * (total_epoch-epoch), True)) | ||||
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||
|  | ||||
|     if xargs.warmup_ratio is None or xargs.warmup_ratio <= float(epoch) / total_epoch: | ||||
|       enable_controller = True | ||||
|       network.set_warmup_ratio(None) | ||||
|     else: | ||||
|       enable_controller = False | ||||
|       network.set_warmup_ratio(1.0 - float(epoch) / total_epoch / xargs.warmup_ratio) | ||||
|  | ||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, controller-warmup={:}, enable_controller={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), network.warmup_ratio, enable_controller)) | ||||
|  | ||||
|     if xargs.algo == 'fbv2' or xargs.algo == 'tas': | ||||
|       network.set_tau(xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1)) | ||||
|       logger.log('[RESET tau as : {:}]'.format(network.tau)) | ||||
|     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | ||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, xargs.algo, epoch_str, xargs.print_freq, logger) | ||||
|                 = search_func(search_loader, network, criterion, w_scheduler, | ||||
|                               w_optimizer, a_optimizer, enable_controller, xargs.algo, epoch_str, xargs.print_freq, logger) | ||||
|     search_time.update(time.time() - start_time) | ||||
|     logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) | ||||
|     logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) | ||||
| @@ -275,6 +291,8 @@ if __name__ == '__main__': | ||||
|   # FOR GDAS | ||||
|   parser.add_argument('--tau_min',            type=float, default=0.1,  help='The minimum tau for Gumbel Softmax.') | ||||
|   parser.add_argument('--tau_max',            type=float, default=10,   help='The maximum tau for Gumbel Softmax.') | ||||
|   # FOR ALL | ||||
|   parser.add_argument('--warmup_ratio',       type=float,               help='The warmup ratio, if None, not use warmup.') | ||||
|   # | ||||
|   parser.add_argument('--track_running_stats',type=int,   default=0, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') | ||||
|   parser.add_argument('--affine'      ,       type=int,   default=0, choices=[0,1],help='Whether use affine=True or False in the BN layer.') | ||||
| @@ -291,7 +309,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   dirname = '{:}-affine{:}_BN{:}-AWD{:}'.format(args.algo, args.affine, args.track_running_stats, args.arch_weight_decay) | ||||
|   dirname = '{:}-affine{:}_BN{:}-AWD{:}-WARM{:}'.format(args.algo, args.affine, args.track_running_stats, args.arch_weight_decay, args.warmup_ratio) | ||||
|   if args.overwite_epochs is not None: | ||||
|     dirname = dirname + '-E{:}'.format(args.overwite_epochs) | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, dirname) | ||||
|   | ||||
| @@ -26,7 +26,7 @@ from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-AWD0.0-WARMNone'): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   seeds = [777, 888, 999] | ||||
| @@ -39,9 +39,9 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|     alg2name['ENAS'] = 'enas-affine0_BN0-None' | ||||
|     alg2name['SETN'] = 'setn-affine0_BN0-None' | ||||
|   else: | ||||
|     alg2name['TAS'] = 'tas-affine0_BN0' | ||||
|     alg2name['FBNetV2'] = 'fbv2-affine0_BN0' | ||||
|     alg2name['TuNAS'] = 'tunas-affine0_BN0' | ||||
|     alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix) | ||||
|     alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix) | ||||
|     alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix) | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth') | ||||
|   alg2data = OrderedDict() | ||||
|   | ||||
| @@ -1,6 +1,10 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| import torch.nn as nn | ||||
| @@ -43,6 +47,7 @@ class GenericNAS301Model(nn.Module): | ||||
|     # algorithm related | ||||
|     self.register_buffer('_tau', torch.zeros(1)) | ||||
|     self._algo        = None | ||||
|     self._warmup_ratio = None | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
| @@ -62,6 +67,13 @@ class GenericNAS301Model(nn.Module): | ||||
|   def set_tau(self, tau): | ||||
|     self._tau.data[:] = tau | ||||
|  | ||||
|   @property | ||||
|   def warmup_ratio(self): | ||||
|     return self._warmup_ratio | ||||
|  | ||||
|   def set_warmup_ratio(self, ratio: float): | ||||
|     self._warmup_ratio = ratio | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._cells.parameters()) | ||||
| @@ -112,7 +124,13 @@ class GenericNAS301Model(nn.Module): | ||||
|       feature = cell(feature) | ||||
|       # apply different searching algorithms | ||||
|       idx = max(0, i-1) | ||||
|       if self._algo == 'fbv2': | ||||
|       if self._warmup_ratio is not None: | ||||
|         if random.random() < self._warmup_ratio: | ||||
|           mask = self._masks[-1] | ||||
|         else: | ||||
|           mask = self._masks[random.randint(0, len(self._masks)-1)] | ||||
|         feature = feature * mask.view(1, -1, 1, 1) | ||||
|       elif self._algo == 'fbv2': | ||||
|         weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1) | ||||
|         mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1) | ||||
|         feature = feature * mask | ||||
|   | ||||
							
								
								
									
										30
									
								
								scripts-search/NATS/search-size.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								scripts-search/NATS/search-size.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,30 @@ | ||||
| #!/bin/bash | ||||
| # bash ./NATS/search-size.sh 0 777 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for GPU-device and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| device=$1 | ||||
| seed=$2 | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed ${seed} | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed ${seed} | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
| CUDA_VISIBLE_DEVICES=${device} python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed ${seed} | ||||
		Reference in New Issue
	
	Block a user