diff --git a/exps/basic/xmain.py b/exps/basic/xmain.py new file mode 100644 index 0000000..87a0cfa --- /dev/null +++ b/exps/basic/xmain.py @@ -0,0 +1,294 @@ +##################################################### +# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # +##################################################### +import sys, time, torch, random, argparse +from PIL import ImageFile + +ImageFile.LOAD_TRUNCATED_IMAGES = True +from copy import deepcopy +from pathlib import Path + +from xautodl.datasets import get_datasets +from xautodl.config_utils import load_config, obtain_basic_args as obtain_args +from xautodl.procedures import ( + prepare_seed, + prepare_logger, + save_checkpoint, + copy_checkpoint, +) +from xautodl.procedures import get_optim_scheduler, get_procedures +from xautodl.models import obtain_model +from xautodl.xmodels import obtain_model as obtain_xmodel +from xautodl.nas_infer_model import obtain_nas_infer_model +from xautodl.utils import get_model_infos +from xautodl.log_utils import AverageMeter, time_string, convert_secs2time + + +def main(args): + assert torch.cuda.is_available(), "CUDA is not available." + torch.backends.cudnn.enabled = True + torch.backends.cudnn.benchmark = True + # torch.backends.cudnn.deterministic = True + # torch.set_num_threads(args.workers) + + prepare_seed(args.rand_seed) + logger = prepare_logger(args) + + train_data, valid_data, xshape, class_num = get_datasets( + args.dataset, args.data_path, args.cutout_length + ) + train_loader = torch.utils.data.DataLoader( + train_data, + batch_size=args.batch_size, + shuffle=True, + num_workers=args.workers, + pin_memory=True, + ) + valid_loader = torch.utils.data.DataLoader( + valid_data, + batch_size=args.batch_size, + shuffle=False, + num_workers=args.workers, + pin_memory=True, + ) + # get configures + model_config = load_config(args.model_config, {"class_num": class_num}, logger) + optim_config = load_config(args.optim_config, {"class_num": class_num}, logger) + + if args.model_source == "normal": + base_model = obtain_model(model_config) + elif args.model_source == "nas": + base_model = obtain_nas_infer_model(model_config, args.extra_model_path) + elif args.model_source == "autodl-searched": + base_model = obtain_model(model_config, args.extra_model_path) + elif args.model_source in ("x", "xmodel"): + base_model = obtain_xmodel(model_config) + else: + raise ValueError("invalid model-source : {:}".format(args.model_source)) + flop, param = get_model_infos(base_model, xshape) + logger.log("model ====>>>>:\n{:}".format(base_model)) + logger.log("model information : {:}".format(base_model.get_message())) + logger.log("-" * 50) + logger.log( + "Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( + param, flop, flop / 1e3 + ) + ) + logger.log("-" * 50) + logger.log("train_data : {:}".format(train_data)) + logger.log("valid_data : {:}".format(valid_data)) + optimizer, scheduler, criterion = get_optim_scheduler( + base_model.parameters(), optim_config + ) + logger.log("optimizer : {:}".format(optimizer)) + logger.log("scheduler : {:}".format(scheduler)) + logger.log("criterion : {:}".format(criterion)) + + last_info, model_base_path, model_best_path = ( + logger.path("info"), + logger.path("model"), + logger.path("best"), + ) + network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda() + + if last_info.exists(): # automatically resume from previous checkpoint + logger.log( + "=> loading checkpoint of the last-info '{:}' start".format(last_info) + ) + last_infox = torch.load(last_info) + start_epoch = last_infox["epoch"] + 1 + last_checkpoint_path = last_infox["last_checkpoint"] + if not last_checkpoint_path.exists(): + logger.log( + "Does not find {:}, try another path".format(last_checkpoint_path) + ) + last_checkpoint_path = ( + last_info.parent + / last_checkpoint_path.parent.name + / last_checkpoint_path.name + ) + checkpoint = torch.load(last_checkpoint_path) + base_model.load_state_dict(checkpoint["base-model"]) + scheduler.load_state_dict(checkpoint["scheduler"]) + optimizer.load_state_dict(checkpoint["optimizer"]) + valid_accuracies = checkpoint["valid_accuracies"] + max_bytes = checkpoint["max_bytes"] + logger.log( + "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( + last_info, start_epoch + ) + ) + elif args.resume is not None: + assert Path(args.resume).exists(), "Can not find the resume file : {:}".format( + args.resume + ) + checkpoint = torch.load(args.resume) + start_epoch = checkpoint["epoch"] + 1 + base_model.load_state_dict(checkpoint["base-model"]) + scheduler.load_state_dict(checkpoint["scheduler"]) + optimizer.load_state_dict(checkpoint["optimizer"]) + valid_accuracies = checkpoint["valid_accuracies"] + max_bytes = checkpoint["max_bytes"] + logger.log( + "=> loading checkpoint from '{:}' start with {:}-th epoch.".format( + args.resume, start_epoch + ) + ) + elif args.init_model is not None: + assert Path( + args.init_model + ).exists(), "Can not find the initialization file : {:}".format(args.init_model) + checkpoint = torch.load(args.init_model) + base_model.load_state_dict(checkpoint["base-model"]) + start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} + logger.log("=> initialize the model from {:}".format(args.init_model)) + else: + logger.log("=> do not find the last-info file : {:}".format(last_info)) + start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} + + train_func, valid_func = get_procedures(args.procedure) + + total_epoch = optim_config.epochs + optim_config.warmup + # Main Training and Evaluation Loop + start_time = time.time() + epoch_time = AverageMeter() + for epoch in range(start_epoch, total_epoch): + scheduler.update(epoch, 0.0) + need_time = "Time Left: {:}".format( + convert_secs2time(epoch_time.avg * (total_epoch - epoch), True) + ) + epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) + LRs = scheduler.get_lr() + find_best = False + # set-up drop-out ratio + if hasattr(base_model, "update_drop_path"): + base_model.update_drop_path( + model_config.drop_path_prob * epoch / total_epoch + ) + logger.log( + "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format( + time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler + ) + ) + + # train for one epoch + train_loss, train_acc1, train_acc5 = train_func( + train_loader, + network, + criterion, + scheduler, + optimizer, + optim_config, + epoch_str, + args.print_freq, + logger, + ) + # log the results + logger.log( + "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format( + time_string(), epoch_str, train_loss, train_acc1, train_acc5 + ) + ) + + # evaluate the performance + if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): + logger.log("-" * 150) + valid_loss, valid_acc1, valid_acc5 = valid_func( + valid_loader, + network, + criterion, + optim_config, + epoch_str, + args.print_freq_eval, + logger, + ) + valid_accuracies[epoch] = valid_acc1 + logger.log( + "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format( + time_string(), + epoch_str, + valid_loss, + valid_acc1, + valid_acc5, + valid_accuracies["best"], + 100 - valid_accuracies["best"], + ) + ) + if valid_acc1 > valid_accuracies["best"]: + valid_accuracies["best"] = valid_acc1 + find_best = True + logger.log( + "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format( + epoch, + valid_acc1, + valid_acc5, + 100 - valid_acc1, + 100 - valid_acc5, + model_best_path, + ) + ) + num_bytes = ( + torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0 + ) + logger.log( + "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format( + next(network.parameters()).device, + int(num_bytes), + num_bytes / 1e3, + num_bytes / 1e6, + num_bytes / 1e9, + ) + ) + max_bytes[epoch] = num_bytes + if epoch % 10 == 0: + torch.cuda.empty_cache() + + # save checkpoint + save_path = save_checkpoint( + { + "epoch": epoch, + "args": deepcopy(args), + "max_bytes": deepcopy(max_bytes), + "FLOP": flop, + "PARAM": param, + "valid_accuracies": deepcopy(valid_accuracies), + "model-config": model_config._asdict(), + "optim-config": optim_config._asdict(), + "base-model": base_model.state_dict(), + "scheduler": scheduler.state_dict(), + "optimizer": optimizer.state_dict(), + }, + model_base_path, + logger, + ) + if find_best: + copy_checkpoint(model_base_path, model_best_path, logger) + last_info = save_checkpoint( + { + "epoch": epoch, + "args": deepcopy(args), + "last_checkpoint": save_path, + }, + logger.path("info"), + logger, + ) + + # measure elapsed time + epoch_time.update(time.time() - start_time) + start_time = time.time() + + logger.log("\n" + "-" * 200) + logger.log( + "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format( + convert_secs2time(epoch_time.sum, True), + max(v for k, v in max_bytes.items()) / 1e6, + logger.path("info"), + ) + ) + logger.log("-" * 200 + "\n") + logger.close() + + +if __name__ == "__main__": + args = obtain_args() + main(args) diff --git a/notebooks/spaces/test-transformer-encoder.ipynb b/notebooks/spaces/test-transformer-encoder.ipynb new file mode 100644 index 0000000..89d4452 --- /dev/null +++ b/notebooks/spaces/test-transformer-encoder.ipynb @@ -0,0 +1,277 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "3f754c96", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from xautodl import spaces\n", + "from xautodl.xlayers import super_core\n", + "\n", + "def _create_stel(input_dim, output_dim, order):\n", + " return super_core.SuperSequential(\n", + " super_core.SuperLinear(input_dim, output_dim),\n", + " super_core.SuperTransformerEncoderLayer(\n", + " output_dim,\n", + " num_heads=spaces.Categorical(2, 4, 6),\n", + " mlp_hidden_multiplier=spaces.Categorical(1, 2, 4),\n", + " order=order,\n", + " ),\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "81d42f4b", + "metadata": {}, + "outputs": [], + "source": [ + "batch, seq_dim, input_dim = 1, 4, 6\n", + "order = super_core.LayerOrder.PreNorm" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8056b37c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SuperSequential(\n", + " (0): SuperSequential(\n", + " (0): SuperLinear(in_features=6, out_features=Categorical(candidates=[12, 24, 36], default_index=None), bias=True)\n", + " (1): SuperTransformerEncoderLayer(\n", + " (norm1): SuperLayerNorm1D(shape=Categorical(candidates=[12, 24, 36], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mha): SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[12, 24, 36], default_index=None), proj_dim=Categorical(candidates=[12, 24, 36], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[12, 24, 36], default_index=None), out_features=Categorical(candidates=[12, 24, 36], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[12, 24, 36], default_index=None), out_features=Categorical(candidates=[12, 24, 36], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[12, 24, 36], default_index=None), out_features=Categorical(candidates=[12, 24, 36], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + " )\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " (norm2): SuperLayerNorm1D(shape=Categorical(candidates=[12, 24, 36], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mlp): SuperMLPv2(\n", + " in_features=Categorical(candidates=[12, 24, 36], default_index=None), hidden_multiplier=Categorical(candidates=[1, 2, 4], default_index=None), out_features=Categorical(candidates=[12, 24, 36], default_index=None), drop=None, fc1 -> act -> drop -> fc2 -> drop,\n", + " (_params): ParameterDict(\n", + " (fc1_super_weight): Parameter containing: [torch.FloatTensor of size 144x36]\n", + " (fc1_super_bias): Parameter containing: [torch.FloatTensor of size 144]\n", + " (fc2_super_weight): Parameter containing: [torch.FloatTensor of size 36x144]\n", + " (fc2_super_bias): Parameter containing: [torch.FloatTensor of size 36]\n", + " )\n", + " (act): GELU()\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " )\n", + " (1): SuperSequential(\n", + " (0): SuperLinear(in_features=Categorical(candidates=[12, 24, 36], default_index=None), out_features=Categorical(candidates=[24, 36, 48], default_index=None), bias=True)\n", + " (1): SuperTransformerEncoderLayer(\n", + " (norm1): SuperLayerNorm1D(shape=Categorical(candidates=[24, 36, 48], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mha): SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[24, 36, 48], default_index=None), proj_dim=Categorical(candidates=[24, 36, 48], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[24, 36, 48], default_index=None), out_features=Categorical(candidates=[24, 36, 48], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[24, 36, 48], default_index=None), out_features=Categorical(candidates=[24, 36, 48], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[24, 36, 48], default_index=None), out_features=Categorical(candidates=[24, 36, 48], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + " )\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " (norm2): SuperLayerNorm1D(shape=Categorical(candidates=[24, 36, 48], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mlp): SuperMLPv2(\n", + " in_features=Categorical(candidates=[24, 36, 48], default_index=None), hidden_multiplier=Categorical(candidates=[1, 2, 4], default_index=None), out_features=Categorical(candidates=[24, 36, 48], default_index=None), drop=None, fc1 -> act -> drop -> fc2 -> drop,\n", + " (_params): ParameterDict(\n", + " (fc1_super_weight): Parameter containing: [torch.FloatTensor of size 192x48]\n", + " (fc1_super_bias): Parameter containing: [torch.FloatTensor of size 192]\n", + " (fc2_super_weight): Parameter containing: [torch.FloatTensor of size 48x192]\n", + " (fc2_super_bias): Parameter containing: [torch.FloatTensor of size 48]\n", + " )\n", + " (act): GELU()\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " )\n", + " (2): SuperSequential(\n", + " (0): SuperLinear(in_features=Categorical(candidates=[24, 36, 48], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=True)\n", + " (1): SuperTransformerEncoderLayer(\n", + " (norm1): SuperLayerNorm1D(shape=Categorical(candidates=[36, 72, 100], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mha): SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[36, 72, 100], default_index=None), proj_dim=Categorical(candidates=[36, 72, 100], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + " )\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " (norm2): SuperLayerNorm1D(shape=Categorical(candidates=[36, 72, 100], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mlp): SuperMLPv2(\n", + " in_features=Categorical(candidates=[36, 72, 100], default_index=None), hidden_multiplier=Categorical(candidates=[1, 2, 4], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), drop=None, fc1 -> act -> drop -> fc2 -> drop,\n", + " (_params): ParameterDict(\n", + " (fc1_super_weight): Parameter containing: [torch.FloatTensor of size 400x100]\n", + " (fc1_super_bias): Parameter containing: [torch.FloatTensor of size 400]\n", + " (fc2_super_weight): Parameter containing: [torch.FloatTensor of size 100x400]\n", + " (fc2_super_bias): Parameter containing: [torch.FloatTensor of size 100]\n", + " )\n", + " (act): GELU()\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + " )\n", + " )\n", + ")\n" + ] + } + ], + "source": [ + "out1_dim = spaces.Categorical(12, 24, 36)\n", + "out2_dim = spaces.Categorical(24, 36, 48)\n", + "out3_dim = spaces.Categorical(36, 72, 100)\n", + "layer1 = _create_stel(input_dim, out1_dim, order)\n", + "layer2 = _create_stel(out1_dim, out2_dim, order)\n", + "layer3 = _create_stel(out2_dim, out3_dim, order)\n", + "model = super_core.SuperSequential(layer1, layer2, layer3)\n", + "print(model)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fd53a7c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "> \u001b[0;32m/Users/xuanyidong/anaconda3/lib/python3.8/site-packages/xautodl-0.9.9-py3.8.egg/xautodl/xlayers/super_transformer.py\u001b[0m(116)\u001b[0;36mforward_raw\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m 114 \u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mpdb\u001b[0m\u001b[0;34m;\u001b[0m \u001b[0mpdb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_trace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0m\u001b[0;32m 115 \u001b[0;31m \u001b[0;31m# feed-forward layer -- MLP\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0m\u001b[0;32m--> 116 \u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0m\u001b[0;32m 117 \u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmlp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0m\u001b[0;32m 118 \u001b[0;31m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_order\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mLayerOrder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPostNorm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0m\n", + "ipdb> print(self)\n", + "SuperTransformerEncoderLayer(\n", + " (norm1): SuperLayerNorm1D(shape=Categorical(candidates=[36, 72, 100], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mha): SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[36, 72, 100], default_index=None), proj_dim=Categorical(candidates=[36, 72, 100], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + " )\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " (norm2): SuperLayerNorm1D(shape=Categorical(candidates=[36, 72, 100], default_index=None), eps=1e-06, elementwise_affine=True)\n", + " (mlp): SuperMLPv2(\n", + " in_features=Categorical(candidates=[36, 72, 100], default_index=None), hidden_multiplier=Categorical(candidates=[1, 2, 4], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), drop=None, fc1 -> act -> drop -> fc2 -> drop,\n", + " (_params): ParameterDict(\n", + " (fc1_super_weight): Parameter containing: [torch.FloatTensor of size 400x100]\n", + " (fc1_super_bias): Parameter containing: [torch.FloatTensor of size 400]\n", + " (fc2_super_weight): Parameter containing: [torch.FloatTensor of size 100x400]\n", + " (fc2_super_bias): Parameter containing: [torch.FloatTensor of size 100]\n", + " )\n", + " (act): GELU()\n", + " (drop): Dropout(p=0.0, inplace=False)\n", + " )\n", + ")\n", + "ipdb> print(inputs.shape)\n", + "torch.Size([1, 4, 100])\n", + "ipdb> print(x.shape)\n", + "torch.Size([1, 4, 96])\n", + "ipdb> print(self.mha)\n", + "SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[36, 72, 100], default_index=None), proj_dim=Categorical(candidates=[36, 72, 100], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + ")\n", + "ipdb> print(self.mha.candidate)\n", + "*** AttributeError: 'SuperSelfAttention' object has no attribute 'candidate'\n", + "ipdb> print(self.mha.abstract_candidate)\n", + "*** AttributeError: 'SuperSelfAttention' object has no attribute 'abstract_candidate'\n", + "ipdb> print(self.mha._abstract_child)\n", + "None\n", + "ipdb> print(self.abstract_child)\n", + "None\n", + "ipdb> print(self.abstract_child.abstract_child)\n", + "*** AttributeError: 'NoneType' object has no attribute 'abstract_child'\n", + "ipdb> print(self.mha)\n", + "SuperSelfAttention(\n", + " input_dim=Categorical(candidates=[36, 72, 100], default_index=None), proj_dim=Categorical(candidates=[36, 72, 100], default_index=None), num_heads=Categorical(candidates=[2, 4, 6], default_index=None), mask=False, infinity=1000000000.0\n", + " (q_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (k_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (v_fc): SuperLinear(in_features=Categorical(candidates=[36, 72, 100], default_index=None), out_features=Categorical(candidates=[36, 72, 100], default_index=None), bias=False)\n", + " (attn_drop): SuperDrop(p=0.0, dims=[-1, -1, -1, -1], recover=True)\n", + ")\n" + ] + } + ], + "source": [ + "inputs = torch.rand(batch, seq_dim, input_dim)\n", + "outputs = model(inputs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "05332b98", + "metadata": {}, + "outputs": [], + "source": [ + "abstract_space = model.abstract_search_space\n", + "abstract_space.clean_last()\n", + "abstract_child = abstract_space.random(reuse_last=True)\n", + "# print(\"The abstract child program is:\\n{:}\".format(abstract_child))\n", + "model.enable_candidate()\n", + "model.set_super_run_type(super_core.SuperRunMode.Candidate)\n", + "model.apply_candidate(abstract_child)\n", + "outputs = model(inputs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3289f938", + "metadata": {}, + "outputs": [], + "source": [ + "print(outputs.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36951cdf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/xautodl/xlayers/super_attention.py b/xautodl/xlayers/super_attention.py index c70ea38..c141b53 100644 --- a/xautodl/xlayers/super_attention.py +++ b/xautodl/xlayers/super_attention.py @@ -38,12 +38,15 @@ class SuperSelfAttention(SuperModule): self._use_mask = use_mask self._infinity = 1e9 - mul_head_dim = (input_dim // num_heads) * num_heads - self.q_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias) - self.k_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias) - self.v_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias) + mul_head_dim = ( + spaces.get_max(input_dim) // spaces.get_min(num_heads) + ) * spaces.get_min(num_heads) + assert mul_head_dim == spaces.get_max(input_dim) + self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) + self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) + self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) - self.attn_drop = SuperDrop(attn_drop, [-1, -1, -1, -1], recover=True) + self.attn_drop = SuperDrop(attn_drop or 0.0, [-1, -1, -1, -1], recover=True) if proj_dim is None: self.proj = SuperLinear(input_dim, proj_dim) self.proj_drop = SuperDropout(proj_drop or 0.0) @@ -127,7 +130,18 @@ class SuperSelfAttention(SuperModule): attn_v1 = attn_v1.softmax(dim=-1) # B * #head * N * N attn_v1 = self.attn_drop(attn_v1) feats_v1 = (attn_v1 @ v_v1).permute(0, 2, 1, 3).reshape(B, N, -1) - return feats_v1 + if C == head_dim * num_head: + feats = feats_v1 + else: # The channels can not be divided by num_head, the remainder forms an additional head + q_v2 = q[:, :, num_head * head_dim :] + k_v2 = k[:, :, num_head * head_dim :] + v_v2 = v[:, :, num_head * head_dim :] + attn_v2 = (q_v2 @ k_v2.transpose(-2, -1)) * math.sqrt(q_v2.shape[-1]) + attn_v2 = attn_v2.softmax(dim=-1) + attn_v2 = self.attn_drop(attn_v2) + feats_v2 = attn_v2 @ v_v2 + feats = torch.cat([feats_v1, feats_v2], dim=-1) + return feats def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: # check the num_heads: diff --git a/xautodl/xmodels/__init__.py b/xautodl/xmodels/__init__.py index 04f21fe..e44777d 100644 --- a/xautodl/xmodels/__init__.py +++ b/xautodl/xmodels/__init__.py @@ -5,3 +5,6 @@ ##################################################### from .transformers import get_transformer + +def obtain_model(config): + raise NotImplementedError