Update notebook
This commit is contained in:
		
							
								
								
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,6 @@ | |||||||
| [submodule "qlib-git"] | [submodule "qlib-git"] | ||||||
| 	path = .latent-data/qlib | 	path = .latent-data/qlib | ||||||
| 	url = git@github.com:microsoft/qlib.git | 	url = git@github.com:microsoft/qlib.git | ||||||
|  | [submodule ".latent-data/qlib"] | ||||||
|  | 	path = .latent-data/qlib | ||||||
|  | 	url = git@github.com:microsoft/qlib.git | ||||||
|   | |||||||
							
								
								
									
										1
									
								
								.latent-data/qlib
									
									
									
									
									
										Submodule
									
								
							
							
								
								
								
								
								
							
						
						
									
										1
									
								
								.latent-data/qlib
									
									
									
									
									
										Submodule
									
								
							 Submodule .latent-data/qlib added at a96f0c2e5f
									
								
							| @@ -113,7 +113,7 @@ If you find that this project helps your research, please consider citing the re | |||||||
|   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} |   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} | ||||||
| } | } | ||||||
| @inproceedings{dong2020nasbench201, | @inproceedings{dong2020nasbench201, | ||||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, |   title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, | ||||||
|   author    = {Dong, Xuanyi and Yang, Yi}, |   author    = {Dong, Xuanyi and Yang, Yi}, | ||||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, |   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, |   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||||
|   | |||||||
| @@ -107,7 +107,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | |||||||
|   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} |   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} | ||||||
| } | } | ||||||
| @inproceedings{dong2020nasbench201, | @inproceedings{dong2020nasbench201, | ||||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, |   title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, | ||||||
|   author    = {Dong, Xuanyi and Yang, Yi}, |   author    = {Dong, Xuanyi and Yang, Yi}, | ||||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, |   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, |   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||||
|   | |||||||
							
								
								
									
										91
									
								
								notebooks/NATS-Bench/issue-96.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								notebooks/NATS-Bench/issue-96.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 1, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "[2021-03-01 12:28:12] Try to use the default NATS-Bench (topology) path from fast_mode=True and path=None.\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "from nats_bench import create\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "def get_correlation(A, B):\n", | ||||||
|  |     "    return float(np.corrcoef(A, B)[0,1])\n", | ||||||
|  |     "\n", | ||||||
|  |     "# Create the API for tologoy search space\n", | ||||||
|  |     "api = create(None, 'tss', fast_mode=True, verbose=False)" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 2, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "There are 15625 architectures on the topology search space\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "print('There are {:} architectures on the topology search space'.format(len(api)))\n", | ||||||
|  |     "accuracies_12, accuracies_200 = [], []\n", | ||||||
|  |     "for i, arch in enumerate(api):\n", | ||||||
|  |     "    info_a = api.get_more_info(i, dataset='cifar10-valid', hp='12', is_random=False)\n", | ||||||
|  |     "    accuracies_12.append(info_a['valid-accuracy'])\n", | ||||||
|  |     "\n", | ||||||
|  |     "    info_b = api.get_more_info(i, dataset='cifar10-valid', hp='200', is_random=False)\n", | ||||||
|  |     "    accuracies_200.append(info_b['test-accuracy'])" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 4, | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "[CIFAR-10] The correlation between 12-epoch validation accuracy and 200-epoch test accuracy is: 91.18%\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "correlation = get_correlation(accuracies_12, accuracies_200)\n", | ||||||
|  |     "print('[CIFAR-10] The correlation between 12-epoch validation accuracy and 200-epoch test accuracy is: {:.2f}%'.format(correlation * 100))" | ||||||
|  |    ] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.8.3" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 4 | ||||||
|  | } | ||||||
		Reference in New Issue
	
	Block a user