fix typos
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| # [NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
|  | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| Each edge here is associated with an operation selected from a predefined operation set. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
|  | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| # Nueral Architecture Search (NAS) | ||||
| # Neural Architecture Search (NAS) | ||||
|  | ||||
| This project contains the following neural architecture search algorithms, implemented in [PyTorch](http://pytorch.org). | ||||
| This project contains the following neural architecture search (NAS) algorithms, implemented in [PyTorch](http://pytorch.org). | ||||
| More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS). | ||||
|  | ||||
| - NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 | ||||
| @@ -158,6 +158,7 @@ If you find that this project helps your research, please consider citing some o | ||||
|   title     = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, | ||||
|   pages     = {3681--3690}, | ||||
|   year      = {2019} | ||||
| } | ||||
| @inproceedings{dong2019search, | ||||
|   | ||||
| @@ -19,6 +19,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -26,12 +27,12 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/BOHB-${dataset} | ||||
| save_dir=./output/search-cell-${space}/BOHB-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--n_iters 6 --num_samples 3 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -20,6 +20,7 @@ seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,12 +28,13 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/ENAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/ENAS-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/ENAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--config_path ./configs/nas-benchmark/algos/ENAS.config \ | ||||
| 	--controller_entropy_weight 0.0001 \ | ||||
| 	--controller_bl_dec 0.99 \ | ||||
|   | ||||
| @@ -19,6 +19,7 @@ seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -26,12 +27,13 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/GDAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--tau_max 10 --tau_min 0.1 \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -20,6 +20,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,12 +28,12 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/R-EA-${dataset} | ||||
| save_dir=./output/search-cell-${space}/R-EA-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name nas-bench-102 \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--ea_cycles 30 --ea_population 10 --ea_sample_size 3 --ea_fast_by_api 1 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -20,6 +20,7 @@ seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,12 +28,13 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/RANDOM-NAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/RANDOM-NAS-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/RANDOM-NAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--config_path ./configs/nas-benchmark/algos/RANDOM.config \ | ||||
| 	--select_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -19,6 +19,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -26,12 +27,12 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/REINFORCE-${dataset} | ||||
| save_dir=./output/search-cell-${space}/REINFORCE-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--learning_rate 0.001 --RL_steps 100 --EMA_momentum 0.9 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -19,6 +19,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -26,12 +27,12 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/RAND-${dataset} | ||||
| save_dir=./output/search-cell-${space}/RAND-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--arch_nas_dataset ./output/AA-NAS-BENCH-4/simplifies/C16-N5-final-infos.pth \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--random_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -20,6 +20,7 @@ seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,12 +28,13 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/cell-search-tiny/SETN-${dataset} | ||||
| save_dir=./output/search-cell-${space}/SETN-${dataset} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name aa-nas \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--config_path configs/nas-benchmark/algos/SETN.config \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--select_num 100 \ | ||||
|   | ||||
		Reference in New Issue
	
	Block a user