LFNA ok on the valid data

This commit is contained in:
D-X-Y 2021-05-23 19:14:12 +00:00
parent 63a0361152
commit b1064e5a60
3 changed files with 27 additions and 55 deletions

View File

@ -99,18 +99,13 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger):
with torch.no_grad(): with torch.no_grad():
meta_model.eval() meta_model.eval()
base_model.eval() base_model.eval()
_, [future_container], _ = meta_model( _, [future_container], time_embeds = meta_model(
future_time.to(args.device).view(1, 1), None, True future_time.to(args.device).view(1, 1), None, True
) )
future_x, future_y = future_x.to(args.device), future_y.to(args.device) future_x, future_y = future_x.to(args.device), future_y.to(args.device)
future_y_hat = base_model.forward_with_container(future_x, future_container) future_y_hat = base_model.forward_with_container(future_x, future_container)
future_loss = criterion(future_y_hat, future_y) future_loss = criterion(future_y_hat, future_y)
logger.log( refine, post_refine_loss = meta_model.adapt(
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
idx, len(env), future_loss.item()
)
)
refine = meta_model.adapt(
base_model, base_model,
criterion, criterion,
future_time.item(), future_time.item(),
@ -118,6 +113,13 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger):
future_y, future_y,
args.refine_lr, args.refine_lr,
args.refine_epochs, args.refine_epochs,
{"param": time_embeds, "loss": future_loss.item()},
)
logger.log(
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
idx, len(env), future_loss.item()
)
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
) )
meta_model.clear_fixed() meta_model.clear_fixed()
meta_model.clear_learnt() meta_model.clear_learnt()
@ -244,21 +246,6 @@ def main(args):
logger.log("The meta-model is\n{:}".format(meta_model)) logger.log("The meta-model is\n{:}".format(meta_model))
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
# train_env.reset_max_seq_length(args.seq_length)
# valid_env.reset_max_seq_length(args.seq_length)
valid_env_loader = torch.utils.data.DataLoader(
valid_env,
batch_size=args.meta_batch,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
train_env_loader = torch.utils.data.DataLoader(
train_env,
batch_sampler=batch_sampler,
num_workers=args.workers,
pin_memory=True,
)
pretrain_v2(base_model, meta_model, criterion, train_env, args, logger) pretrain_v2(base_model, meta_model, criterion, train_env, args, logger)
# try to evaluate once # try to evaluate once
@ -507,7 +494,7 @@ if __name__ == "__main__":
help="The learning rate for the optimizer, during refine", help="The learning rate for the optimizer, during refine",
) )
parser.add_argument( parser.add_argument(
"--refine_epochs", type=int, default=50, help="The final refine #epochs." "--refine_epochs", type=int, default=40, help="The final refine #epochs."
) )
parser.add_argument( parser.add_argument(
"--early_stop_thresh", "--early_stop_thresh",

View File

@ -276,10 +276,10 @@ class LFNA_Meta(super_core.SuperModule):
def forward_candidate(self, input): def forward_candidate(self, input):
raise NotImplementedError raise NotImplementedError
def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs): def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs, init_info):
distance = self.get_closest_meta_distance(timestamp) distance = self.get_closest_meta_distance(timestamp)
if distance + self._interval * 1e-2 <= self._interval: if distance + self._interval * 1e-2 <= self._interval:
return False return False, None
x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device) x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device)
with torch.set_grad_enabled(True): with torch.set_grad_enabled(True):
new_param = self.create_meta_embed() new_param = self.create_meta_embed()
@ -290,7 +290,11 @@ class LFNA_Meta(super_core.SuperModule):
self.replace_append_learnt(timestamp, new_param) self.replace_append_learnt(timestamp, new_param)
self.train() self.train()
base_model.train() base_model.train()
best_new_param, best_loss = None, 1e9 if init_info is not None:
best_loss = init_info["loss"]
new_param.data.copy_(init_info["param"].data)
else:
best_new_param, best_loss = None, 1e9
for iepoch in range(epochs): for iepoch in range(epochs):
optimizer.zero_grad() optimizer.zero_grad()
_, [_], time_embed = self(timestamp.view(1, 1), None, True) _, [_], time_embed = self(timestamp.view(1, 1), None, True)
@ -303,14 +307,14 @@ class LFNA_Meta(super_core.SuperModule):
loss.backward() loss.backward()
optimizer.step() optimizer.step()
# print("{:03d}/{:03d} : loss : {:.4f} = {:.4f} + {:.4f}".format(iepoch, epochs, loss.item(), meta_loss.item(), match_loss.item())) # print("{:03d}/{:03d} : loss : {:.4f} = {:.4f} + {:.4f}".format(iepoch, epochs, loss.item(), meta_loss.item(), match_loss.item()))
if loss.item() < best_loss: if meta_loss.item() < best_loss:
with torch.no_grad(): with torch.no_grad():
best_loss = loss.item() best_loss = meta_loss.item()
best_new_param = new_param.detach() best_new_param = new_param.detach()
with torch.no_grad(): with torch.no_grad():
self.replace_append_learnt(None, None) self.replace_append_learnt(None, None)
self.append_fixed(timestamp, best_new_param) self.append_fixed(timestamp, best_new_param)
return True return True, meta_loss.item()
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format( return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(

View File

@ -66,11 +66,6 @@ class SyntheticDEnv(data.Dataset):
self._cov_functors = cov_functors self._cov_functors = cov_functors
self._oracle_map = None self._oracle_map = None
self._seq_length = None
@property
def seq_length(self):
return self._seq_length
@property @property
def min_timestamp(self): def min_timestamp(self):
@ -84,14 +79,12 @@ class SyntheticDEnv(data.Dataset):
def timestamp_interval(self): def timestamp_interval(self):
return self._timestamp_generator.interval return self._timestamp_generator.interval
def random_timestamp(self): def random_timestamp(self, min_timestamp=None, max_timestamp=None):
return ( if min_timestamp is None:
random.random() * (self.max_timestamp - self.min_timestamp) min_timestamp = self.min_timestamp
+ self.min_timestamp if max_timestamp is None:
) max_timestamp = self.max_timestamp
return random.random() * (max_timestamp - min_timestamp) + min_timestamp
def reset_max_seq_length(self, seq_length):
self._seq_length = seq_length
def get_timestamp(self, index): def get_timestamp(self, index):
if index is None: if index is None:
@ -119,19 +112,7 @@ class SyntheticDEnv(data.Dataset):
def __getitem__(self, index): def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
index, timestamp = self._timestamp_generator[index] index, timestamp = self._timestamp_generator[index]
if self._seq_length is None: return self.__call__(timestamp)
return self.__call__(timestamp)
else:
noise = (
random.random() * self.timestamp_interval * self._timestamp_noise_scale
)
timestamps = [
timestamp + i * self.timestamp_interval + noise
for i in range(self._seq_length)
]
# xdata = [self.__call__(timestamp) for timestamp in timestamps]
# return zip_sequence(xdata)
return self.seq_call(timestamps)
def seq_call(self, timestamps): def seq_call(self, timestamps):
with torch.no_grad(): with torch.no_grad():