Add RS
This commit is contained in:
		
							
								
								
									
										356
									
								
								lib/trade_models/quant_rs_transformer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										356
									
								
								lib/trade_models/quant_rs_transformer.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,356 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | ||||||
|  | ################################################## | ||||||
|  | from __future__ import division | ||||||
|  | from __future__ import print_function | ||||||
|  |  | ||||||
|  | import os, math, random | ||||||
|  | from collections import OrderedDict | ||||||
|  | import numpy as np | ||||||
|  | import pandas as pd | ||||||
|  | import copy | ||||||
|  | from functools import partial | ||||||
|  | from typing import Optional, Text | ||||||
|  |  | ||||||
|  | from qlib.utils import ( | ||||||
|  |     unpack_archive_with_buffer, | ||||||
|  |     save_multiple_parts_file, | ||||||
|  |     get_or_create_path, | ||||||
|  |     drop_nan_by_y_index, | ||||||
|  | ) | ||||||
|  | from qlib.log import get_module_logger | ||||||
|  |  | ||||||
|  | import torch | ||||||
|  | import torch.nn.functional as F | ||||||
|  | import torch.optim as optim | ||||||
|  | import torch.utils.data as th_data | ||||||
|  |  | ||||||
|  | from log_utils import AverageMeter | ||||||
|  | from utils import count_parameters | ||||||
|  |  | ||||||
|  | from xlayers import super_core | ||||||
|  | from .transformers import DEFAULT_NET_CONFIG | ||||||
|  | from .transformers import get_transformer | ||||||
|  |  | ||||||
|  |  | ||||||
|  | from qlib.model.base import Model | ||||||
|  | from qlib.data.dataset import DatasetH | ||||||
|  | from qlib.data.dataset.handler import DataHandlerLP | ||||||
|  |  | ||||||
|  |  | ||||||
|  | DEFAULT_OPT_CONFIG = dict( | ||||||
|  |     epochs=200, | ||||||
|  |     lr=0.001, | ||||||
|  |     batch_size=2000, | ||||||
|  |     early_stop=20, | ||||||
|  |     loss="mse", | ||||||
|  |     optimizer="adam", | ||||||
|  |     num_workers=4, | ||||||
|  | ) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class QuantRandomSearchTransformer(Model): | ||||||
|  |     """Transformer-based Quant Model""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, | ||||||
|  |         net_config=None, | ||||||
|  |         opt_config=None, | ||||||
|  |         rs_times=10, | ||||||
|  |         metric="", | ||||||
|  |         GPU=0, | ||||||
|  |         seed=None, | ||||||
|  |         **kwargs | ||||||
|  |     ): | ||||||
|  |         # Set logger. | ||||||
|  |         self.logger = get_module_logger("RS-Transformer") | ||||||
|  |         self.logger.info("QuantTransformer PyTorch version...") | ||||||
|  |  | ||||||
|  |         # set hyper-parameters. | ||||||
|  |         self.net_config = net_config or DEFAULT_NET_CONFIG | ||||||
|  |         self.opt_config = opt_config or DEFAULT_OPT_CONFIG | ||||||
|  |         self.rs_times = rs_times | ||||||
|  |         self.metric = metric | ||||||
|  |         self.device = torch.device( | ||||||
|  |             "cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" | ||||||
|  |         ) | ||||||
|  |         self.seed = seed | ||||||
|  |  | ||||||
|  |         self.logger.info( | ||||||
|  |             "Transformer parameters setting:" | ||||||
|  |             "\nnet_config : {:}" | ||||||
|  |             "\nopt_config : {:}" | ||||||
|  |             "\nrs_times   : {:}" | ||||||
|  |             "\nmetric     : {:}" | ||||||
|  |             "\ndevice     : {:}" | ||||||
|  |             "\nseed       : {:}".format( | ||||||
|  |                 self.net_config, | ||||||
|  |                 self.opt_config, | ||||||
|  |                 self.rs_times, | ||||||
|  |                 self.metric, | ||||||
|  |                 self.device, | ||||||
|  |                 self.seed, | ||||||
|  |             ) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         if self.seed is not None: | ||||||
|  |             random.seed(self.seed) | ||||||
|  |             np.random.seed(self.seed) | ||||||
|  |             torch.manual_seed(self.seed) | ||||||
|  |             if self.use_gpu: | ||||||
|  |                 torch.cuda.manual_seed(self.seed) | ||||||
|  |                 torch.cuda.manual_seed_all(self.seed) | ||||||
|  |  | ||||||
|  |         """ | ||||||
|  |         # self.model = get_transformer(self.net_config) | ||||||
|  |         # self.model.set_super_run_type(super_core.SuperRunMode.FullModel) | ||||||
|  |         # self.logger.info("model: {:}".format(self.model)) | ||||||
|  |         # self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) | ||||||
|  |  | ||||||
|  |         if self.opt_config["optimizer"] == "adam": | ||||||
|  |             self.train_optimizer = optim.Adam( | ||||||
|  |                 self.model.parameters(), lr=self.opt_config["lr"] | ||||||
|  |             ) | ||||||
|  |         elif self.opt_config["optimizer"] == "adam": | ||||||
|  |             self.train_optimizer = optim.SGD( | ||||||
|  |                 self.model.parameters(), lr=self.opt_config["lr"] | ||||||
|  |             ) | ||||||
|  |         else: | ||||||
|  |             raise NotImplementedError( | ||||||
|  |                 "optimizer {:} is not supported!".format(optimizer) | ||||||
|  |             ) | ||||||
|  |         self.model.to(self.device) | ||||||
|  |         """ | ||||||
|  |  | ||||||
|  |         self.fitted = False | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def use_gpu(self): | ||||||
|  |         return self.device != torch.device("cpu") | ||||||
|  |  | ||||||
|  |     def loss_fn(self, pred, label): | ||||||
|  |         mask = ~torch.isnan(label) | ||||||
|  |         if self.opt_config["loss"] == "mse": | ||||||
|  |             return F.mse_loss(pred[mask], label[mask]) | ||||||
|  |         else: | ||||||
|  |             raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||||
|  |  | ||||||
|  |     def metric_fn(self, pred, label): | ||||||
|  |         # the metric score : higher is better | ||||||
|  |         if self.metric == "" or self.metric == "loss": | ||||||
|  |             return -self.loss_fn(pred, label) | ||||||
|  |         else: | ||||||
|  |             raise ValueError("unknown metric `{:}`".format(self.metric)) | ||||||
|  |  | ||||||
|  |     def train_or_test_epoch( | ||||||
|  |         self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None | ||||||
|  |     ): | ||||||
|  |         if is_train: | ||||||
|  |             model.train() | ||||||
|  |         else: | ||||||
|  |             model.eval() | ||||||
|  |         score_meter, loss_meter = AverageMeter(), AverageMeter() | ||||||
|  |         for ibatch, (feats, labels) in enumerate(xloader): | ||||||
|  |             feats = feats.to(self.device, non_blocking=True) | ||||||
|  |             labels = labels.to(self.device, non_blocking=True) | ||||||
|  |             # forward the network | ||||||
|  |             preds = model(feats) | ||||||
|  |             loss = loss_fn(preds, labels) | ||||||
|  |             with torch.no_grad(): | ||||||
|  |                 score = self.metric_fn(preds, labels) | ||||||
|  |                 loss_meter.update(loss.item(), feats.size(0)) | ||||||
|  |                 score_meter.update(score.item(), feats.size(0)) | ||||||
|  |             # optimize the network | ||||||
|  |             if is_train and optimizer is not None: | ||||||
|  |                 optimizer.zero_grad() | ||||||
|  |                 loss.backward() | ||||||
|  |                 torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) | ||||||
|  |                 optimizer.step() | ||||||
|  |         return loss_meter.avg, score_meter.avg | ||||||
|  |  | ||||||
|  |     def search(self, rs_times, train_loader, valid_loader, save_dir): | ||||||
|  |         for index in range(rs_times): | ||||||
|  |             import pdb | ||||||
|  |  | ||||||
|  |             pdb.set_trace() | ||||||
|  |         print("---") | ||||||
|  |  | ||||||
|  |     def fit( | ||||||
|  |         self, | ||||||
|  |         dataset: DatasetH, | ||||||
|  |         save_dir: Optional[Text] = None, | ||||||
|  |     ): | ||||||
|  |         def _prepare_dataset(df_data): | ||||||
|  |             return th_data.TensorDataset( | ||||||
|  |                 torch.from_numpy(df_data["feature"].values).float(), | ||||||
|  |                 torch.from_numpy(df_data["label"].values).squeeze().float(), | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |         def _prepare_loader(dataset, shuffle): | ||||||
|  |             return th_data.DataLoader( | ||||||
|  |                 dataset, | ||||||
|  |                 batch_size=self.opt_config["batch_size"], | ||||||
|  |                 drop_last=False, | ||||||
|  |                 pin_memory=True, | ||||||
|  |                 num_workers=self.opt_config["num_workers"], | ||||||
|  |                 shuffle=shuffle, | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |         df_train, df_valid, df_test = dataset.prepare( | ||||||
|  |             ["train", "valid", "test"], | ||||||
|  |             col_set=["feature", "label"], | ||||||
|  |             data_key=DataHandlerLP.DK_L, | ||||||
|  |         ) | ||||||
|  |         train_dataset, valid_dataset, test_dataset = ( | ||||||
|  |             _prepare_dataset(df_train), | ||||||
|  |             _prepare_dataset(df_valid), | ||||||
|  |             _prepare_dataset(df_test), | ||||||
|  |         ) | ||||||
|  |         train_loader, valid_loader, test_loader = ( | ||||||
|  |             _prepare_loader(train_dataset, True), | ||||||
|  |             _prepare_loader(valid_dataset, False), | ||||||
|  |             _prepare_loader(test_dataset, False), | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         save_dir = get_or_create_path(save_dir, return_dir=True) | ||||||
|  |         self.logger.info( | ||||||
|  |             "Fit procedure for [{:}] with save path={:}".format( | ||||||
|  |                 self.__class__.__name__, save_dir | ||||||
|  |             ) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         model = search(self.rs_times, train_loader, valid_loader, save_dir) | ||||||
|  |  | ||||||
|  |         def _internal_test(ckp_epoch=None, results_dict=None): | ||||||
|  |             with torch.no_grad(): | ||||||
|  |                 train_loss, train_score = self.train_or_test_epoch( | ||||||
|  |                     train_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||||
|  |                 ) | ||||||
|  |                 valid_loss, valid_score = self.train_or_test_epoch( | ||||||
|  |                     valid_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||||
|  |                 ) | ||||||
|  |                 test_loss, test_score = self.train_or_test_epoch( | ||||||
|  |                     test_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||||
|  |                 ) | ||||||
|  |                 xstr = ( | ||||||
|  |                     "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( | ||||||
|  |                         train_score, valid_score, test_score | ||||||
|  |                     ) | ||||||
|  |                 ) | ||||||
|  |                 if ckp_epoch is not None and isinstance(results_dict, dict): | ||||||
|  |                     results_dict["train"][ckp_epoch] = train_score | ||||||
|  |                     results_dict["valid"][ckp_epoch] = valid_score | ||||||
|  |                     results_dict["test"][ckp_epoch] = test_score | ||||||
|  |                 return dict(train=train_score, valid=valid_score, test=test_score), xstr | ||||||
|  |  | ||||||
|  |         # Pre-fetch the potential checkpoints | ||||||
|  |         ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__)) | ||||||
|  |         if os.path.exists(ckp_path): | ||||||
|  |             ckp_data = torch.load(ckp_path) | ||||||
|  |             stop_steps, best_score, best_epoch = ( | ||||||
|  |                 ckp_data["stop_steps"], | ||||||
|  |                 ckp_data["best_score"], | ||||||
|  |                 ckp_data["best_epoch"], | ||||||
|  |             ) | ||||||
|  |             start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"] | ||||||
|  |             results_dict = ckp_data["results_dict"] | ||||||
|  |             self.model.load_state_dict(ckp_data["net_state_dict"]) | ||||||
|  |             self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"]) | ||||||
|  |             self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path)) | ||||||
|  |         else: | ||||||
|  |             stop_steps, best_score, best_epoch = 0, -np.inf, -1 | ||||||
|  |             start_epoch, best_param = 0, None | ||||||
|  |             results_dict = dict( | ||||||
|  |                 train=OrderedDict(), valid=OrderedDict(), test=OrderedDict() | ||||||
|  |             ) | ||||||
|  |             _, eval_str = _internal_test(-1, results_dict) | ||||||
|  |             self.logger.info( | ||||||
|  |                 "Training from scratch, metrics@start: {:}".format(eval_str) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |         for iepoch in range(start_epoch, self.opt_config["epochs"]): | ||||||
|  |             self.logger.info( | ||||||
|  |                 "Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format( | ||||||
|  |                     iepoch, self.opt_config["epochs"], best_epoch, best_score | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |             train_loss, train_score = self.train_or_test_epoch( | ||||||
|  |                 train_loader, | ||||||
|  |                 self.model, | ||||||
|  |                 self.loss_fn, | ||||||
|  |                 self.metric_fn, | ||||||
|  |                 True, | ||||||
|  |                 self.train_optimizer, | ||||||
|  |             ) | ||||||
|  |             self.logger.info( | ||||||
|  |                 "Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |             current_eval_scores, eval_str = _internal_test(iepoch, results_dict) | ||||||
|  |             self.logger.info("Evaluating :: {:}".format(eval_str)) | ||||||
|  |  | ||||||
|  |             if current_eval_scores["valid"] > best_score: | ||||||
|  |                 stop_steps, best_epoch, best_score = ( | ||||||
|  |                     0, | ||||||
|  |                     iepoch, | ||||||
|  |                     current_eval_scores["valid"], | ||||||
|  |                 ) | ||||||
|  |                 best_param = copy.deepcopy(self.model.state_dict()) | ||||||
|  |             else: | ||||||
|  |                 stop_steps += 1 | ||||||
|  |                 if stop_steps >= self.opt_config["early_stop"]: | ||||||
|  |                     self.logger.info( | ||||||
|  |                         "early stop at {:}-th epoch, where the best is @{:}".format( | ||||||
|  |                             iepoch, best_epoch | ||||||
|  |                         ) | ||||||
|  |                     ) | ||||||
|  |                     break | ||||||
|  |             save_info = dict( | ||||||
|  |                 net_config=self.net_config, | ||||||
|  |                 opt_config=self.opt_config, | ||||||
|  |                 net_state_dict=self.model.state_dict(), | ||||||
|  |                 opt_state_dict=self.train_optimizer.state_dict(), | ||||||
|  |                 best_param=best_param, | ||||||
|  |                 stop_steps=stop_steps, | ||||||
|  |                 best_score=best_score, | ||||||
|  |                 best_epoch=best_epoch, | ||||||
|  |                 results_dict=results_dict, | ||||||
|  |                 start_epoch=iepoch + 1, | ||||||
|  |             ) | ||||||
|  |             torch.save(save_info, ckp_path) | ||||||
|  |         self.logger.info( | ||||||
|  |             "The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch) | ||||||
|  |         ) | ||||||
|  |         self.model.load_state_dict(best_param) | ||||||
|  |         _, eval_str = _internal_test("final", results_dict) | ||||||
|  |         self.logger.info("Reload the best parameter :: {:}".format(eval_str)) | ||||||
|  |  | ||||||
|  |         if self.use_gpu: | ||||||
|  |             torch.cuda.empty_cache() | ||||||
|  |         self.fitted = True | ||||||
|  |  | ||||||
|  |     def predict(self, dataset): | ||||||
|  |         if not self.fitted: | ||||||
|  |             raise ValueError("The model is not fitted yet!") | ||||||
|  |         x_test = dataset.prepare("test", col_set="feature") | ||||||
|  |         index = x_test.index | ||||||
|  |  | ||||||
|  |         self.model.eval() | ||||||
|  |         x_values = x_test.values | ||||||
|  |         sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"] | ||||||
|  |         preds = [] | ||||||
|  |  | ||||||
|  |         for begin in range(sample_num)[::batch_size]: | ||||||
|  |  | ||||||
|  |             if sample_num - begin < batch_size: | ||||||
|  |                 end = sample_num | ||||||
|  |             else: | ||||||
|  |                 end = begin + batch_size | ||||||
|  |  | ||||||
|  |             x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) | ||||||
|  |  | ||||||
|  |             with torch.no_grad(): | ||||||
|  |                 pred = self.model(x_batch).detach().cpu().numpy() | ||||||
|  |             preds.append(pred) | ||||||
|  |  | ||||||
|  |         return pd.Series(np.concatenate(preds), index=index) | ||||||
		Reference in New Issue
	
	Block a user