102->201 / NAS->autoDL / more configs of TAS / reorganize docs / fix bugs in NAS baselines
This commit is contained in:
		
							
								
								
									
										84
									
								
								exps/NAS-Bench-201/check.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								exps/NAS-Bench-201/check.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,84 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # python exps/NAS-Bench-201/check.py --base_save_dir  | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from shutil import copyfile | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def check_files(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     #xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).'.format(num_evaluated_arch, meta_num_archs, sum(k*v for k, v in num_seeds.items()))) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('There are {:5d} architectures that are evaluated {:} times.'.format(num_seeds[key], key)) | ||||
|  | ||||
|   dir2ckps, dir2ckp_exists = dict(), dict() | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): | ||||
|     seeds = [777, 888, 999] | ||||
|     numrs = defaultdict(lambda: 0) | ||||
|     all_checkpoints, all_ckp_exists = [], [] | ||||
|     for arch_index in arch_indexes: | ||||
|       checkpoints = ['arch-{:}-seed-{:04d}.pth'.format(arch_index, seed) for seed in seeds] | ||||
|       ckp_exists  = [(sub_dir/x).exists() for x in checkpoints] | ||||
|       arch_index  = int(arch_index) | ||||
|       assert 0 <= arch_index < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|       all_checkpoints += checkpoints | ||||
|       all_ckp_exists  += ckp_exists | ||||
|       numrs[sum(ckp_exists)] += 1 | ||||
|     dir2ckps[ str(sub_dir) ]       = all_checkpoints | ||||
|     dir2ckp_exists[ str(sub_dir) ] = all_ckp_exists | ||||
|     # measure time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     numrstr = ', '.join( ['{:}: {:03d}'.format(x, numrs[x]) for x in sorted(numrs.keys())] ) | ||||
|     print('{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}'.format(time_string(), IDX+1, len(subdir2archs), len(arch_indexes), len(all_checkpoints), sum(all_ckp_exists), sub_dir, convert_secs2time(epoch_time.avg * (len(subdir2archs)-IDX-1), True), numrstr)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS Benchmark 201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',     help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',       type=int, default=4,                                 help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel',        type=int, default=16,                                help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',      type=int, default=5,                                 help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path( args.base_save_dir ) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('check NAS-Bench-201 in {:}'.format(save_dir)) | ||||
|  | ||||
|   basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|   check_files(save_dir, meta_path, basestr) | ||||
							
								
								
									
										28
									
								
								exps/NAS-Bench-201/dist-setup.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								exps/NAS-Bench-201/dist-setup.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,28 @@ | ||||
| import os | ||||
| from setuptools import setup | ||||
|  | ||||
|  | ||||
| def read(fname='README.md'): | ||||
|   with open(os.path.join(os.path.dirname(__file__), fname), encoding='utf-8') as cfile: | ||||
|     return cfile.read() | ||||
|  | ||||
|  | ||||
| setup( | ||||
|     name = "nas_bench_201", | ||||
|     version = "1.0", | ||||
|     author = "Xuanyi Dong", | ||||
|     author_email = "dongxuanyi888@gmail.com", | ||||
|     description = "API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|     license = "MIT", | ||||
|     keywords = "NAS Dataset API DeepLearning", | ||||
|     url = "https://github.com/D-X-Y/NAS-Bench-201", | ||||
|     packages=['nas_201_api'], | ||||
|     long_description=read('README.md'), | ||||
|     long_description_content_type='text/markdown', | ||||
|     classifiers=[ | ||||
|         "Programming Language :: Python", | ||||
|         "Topic :: Database", | ||||
|         "Topic :: Scientific/Engineering :: Artificial Intelligence", | ||||
|         "License :: OSI Approved :: MIT License", | ||||
|     ], | ||||
| ) | ||||
							
								
								
									
										136
									
								
								exps/NAS-Bench-201/functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										136
									
								
								exps/NAS-Bench-201/functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,136 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, torch | ||||
| from procedures   import prepare_seed, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from config_utils import dict2config | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net | ||||
|  | ||||
|  | ||||
|  | ||||
| __all__ = ['evaluate_for_seed', 'pure_evaluate'] | ||||
|  | ||||
|  | ||||
|  | ||||
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | ||||
|   data_time, batch_time, batch = AverageMeter(), AverageMeter(), None | ||||
|   losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   latencies = [] | ||||
|   network.eval() | ||||
|   with torch.no_grad(): | ||||
|     end = time.time() | ||||
|     for i, (inputs, targets) in enumerate(xloader): | ||||
|       targets = targets.cuda(non_blocking=True) | ||||
|       inputs  = inputs.cuda(non_blocking=True) | ||||
|       data_time.update(time.time() - end) | ||||
|       # forward | ||||
|       features, logits = network(inputs) | ||||
|       loss             = criterion(logits, targets) | ||||
|       batch_time.update(time.time() - end) | ||||
|       if batch is None or batch == inputs.size(0): | ||||
|         batch = inputs.size(0) | ||||
|         latencies.append( batch_time.val - data_time.val ) | ||||
|       # record loss and accuracy | ||||
|       prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|       losses.update(loss.item(),  inputs.size(0)) | ||||
|       top1.update  (prec1.item(), inputs.size(0)) | ||||
|       top5.update  (prec5.item(), inputs.size(0)) | ||||
|       end = time.time() | ||||
|   if len(latencies) > 2: latencies = latencies[1:] | ||||
|   return losses.avg, top1.avg, top5.avg, latencies | ||||
|  | ||||
|  | ||||
|  | ||||
| def procedure(xloader, network, criterion, scheduler, optimizer, mode): | ||||
|   losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   if mode == 'train'  : network.train() | ||||
|   elif mode == 'valid': network.eval() | ||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) | ||||
|  | ||||
|   data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() | ||||
|   for i, (inputs, targets) in enumerate(xloader): | ||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) | ||||
|  | ||||
|     targets = targets.cuda(non_blocking=True) | ||||
|     if mode == 'train': optimizer.zero_grad() | ||||
|     # forward | ||||
|     features, logits = network(inputs) | ||||
|     loss             = criterion(logits, targets) | ||||
|     # backward | ||||
|     if mode == 'train': | ||||
|       loss.backward() | ||||
|       optimizer.step() | ||||
|     # record loss and accuracy | ||||
|     prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) | ||||
|     losses.update(loss.item(),  inputs.size(0)) | ||||
|     top1.update  (prec1.item(), inputs.size(0)) | ||||
|     top5.update  (prec5.item(), inputs.size(0)) | ||||
|     # count time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|   return losses.avg, top1.avg, top5.avg, batch_time.sum | ||||
|  | ||||
|  | ||||
|  | ||||
| def evaluate_for_seed(arch_config, config, arch, train_loader, valid_loaders, seed, logger): | ||||
|  | ||||
|   prepare_seed(seed) # random seed | ||||
|   net = get_cell_based_tiny_net(dict2config({'name': 'infer.tiny', | ||||
|                                              'C': arch_config['channel'], 'N': arch_config['num_cells'], | ||||
|                                              'genotype': arch, 'num_classes': config.class_num} | ||||
|                                             , None) | ||||
|                                  ) | ||||
|   #net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) | ||||
|   flop, param  = get_model_infos(net, config.xshape) | ||||
|   logger.log('Network : {:}'.format(net.get_message()), False) | ||||
|   logger.log('{:} Seed-------------------------- {:} --------------------------'.format(time_string(), seed)) | ||||
|   logger.log('FLOP = {:} MB, Param = {:} MB'.format(flop, param)) | ||||
|   # train and valid | ||||
|   optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), config) | ||||
|   network, criterion = torch.nn.DataParallel(net).cuda(), criterion.cuda() | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {} | ||||
|   train_times , valid_times = {}, {} | ||||
|   for epoch in range(total_epoch): | ||||
|     scheduler.update(epoch, 0.0) | ||||
|  | ||||
|     train_loss, train_acc1, train_acc5, train_tm = procedure(train_loader, network, criterion, scheduler, optimizer, 'train') | ||||
|     train_losses[epoch] = train_loss | ||||
|     train_acc1es[epoch] = train_acc1  | ||||
|     train_acc5es[epoch] = train_acc5 | ||||
|     train_times [epoch] = train_tm | ||||
|     with torch.no_grad(): | ||||
|       for key, xloder in valid_loaders.items(): | ||||
|         valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(xloder  , network, criterion,      None,      None, 'valid') | ||||
|         valid_losses['{:}@{:}'.format(key,epoch)] = valid_loss | ||||
|         valid_acc1es['{:}@{:}'.format(key,epoch)] = valid_acc1  | ||||
|         valid_acc5es['{:}@{:}'.format(key,epoch)] = valid_acc5 | ||||
|         valid_times ['{:}@{:}'.format(key,epoch)] = valid_tm | ||||
|  | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch-1), True) ) | ||||
|     logger.log('{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%]'.format(time_string(), need_time, epoch, total_epoch, train_loss, train_acc1, train_acc5, valid_loss, valid_acc1, valid_acc5)) | ||||
|   info_seed = {'flop' : flop, | ||||
|                'param': param, | ||||
|                'channel'     : arch_config['channel'], | ||||
|                'num_cells'   : arch_config['num_cells'], | ||||
|                'config'      : config._asdict(), | ||||
|                'total_epoch' : total_epoch , | ||||
|                'train_losses': train_losses, | ||||
|                'train_acc1es': train_acc1es, | ||||
|                'train_acc5es': train_acc5es, | ||||
|                'train_times' : train_times, | ||||
|                'valid_losses': valid_losses, | ||||
|                'valid_acc1es': valid_acc1es, | ||||
|                'valid_acc5es': valid_acc5es, | ||||
|                'valid_times' : valid_times, | ||||
|                'net_state_dict': net.state_dict(), | ||||
|                'net_string'  : '{:}'.format(net), | ||||
|                'finish-train': True | ||||
|               } | ||||
|   return info_seed | ||||
							
								
								
									
										316
									
								
								exps/NAS-Bench-201/main.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										316
									
								
								exps/NAS-Bench-201/main.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,316 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019-2020         # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, random, argparse | ||||
| from PIL     import ImageFile | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from procedures   import save_checkpoint, copy_checkpoint | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
| from functions    import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configurature | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, \ | ||||
|                             {'class_num': class_num, | ||||
|                              'xshape'   : xshape}, \ | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( workers ) | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   if use_less: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   else: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
|   all_archs = meta_info['archs'] | ||||
|   assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) | ||||
|   assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) | ||||
|   if arch_index == -1: | ||||
|     to_evaluate_indexes = list(range(srange[0], srange[1]+1)) | ||||
|   else: | ||||
|     to_evaluate_indexes = [arch_index] | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : arch_index = {:}'.format(arch_index)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> architecture config : {:}'.format(arch_config)) | ||||
|    | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     arch = all_archs[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) | ||||
|     #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) | ||||
|     logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) | ||||
|    | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else         : | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, use_less, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) | ||||
|     logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) | ||||
|     logger.log('{:}'.format('*'*100)) | ||||
|  | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
|   torch.set_num_threads( workers ) | ||||
|    | ||||
|   save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells']) | ||||
|   logger   = Logger(str(save_dir), 0, False) | ||||
|   if model_str in CellArchitectures: | ||||
|     arch   = CellArchitectures[model_str] | ||||
|     logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) | ||||
|   else: | ||||
|     try: | ||||
|       arch = CellStructure.str2structure(model_str) | ||||
|     except: | ||||
|       raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) | ||||
|   assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) | ||||
|   logger.log('Start train-evaluate {:}'.format(arch.tostr())) | ||||
|   logger.log('arch_config : {:}'.format(arch_config)) | ||||
|  | ||||
|   start_time, seed_time = time.time(), AverageMeter() | ||||
|   for _is, seed in enumerate(seeds): | ||||
|     logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) | ||||
|     to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) | ||||
|     if to_save_name.exists(): | ||||
|       logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
|     all_dataset_keys = checkpoint['all_dataset_keys'] | ||||
|     for dataset_key in all_dataset_keys: | ||||
|       logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) | ||||
|       dataset_info = checkpoint[dataset_key] | ||||
|       #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) | ||||
|       logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) | ||||
|       logger.log('config : {:}'.format(dataset_info['config'])) | ||||
|       logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) | ||||
|       last_epoch = dataset_info['total_epoch'] - 1 | ||||
|       train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] | ||||
|       valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] | ||||
|       logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) | ||||
|     # measure elapsed time | ||||
|     seed_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) | ||||
|     logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}'.format(_is, len(seeds), seed, need_time)) | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
|  | ||||
|   random.seed( 88 ) # please do not change this line for reproducibility | ||||
|   random.shuffle( archs ) | ||||
|   # to test fixed-random shuffle  | ||||
|   #print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() )) | ||||
|   #print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() )) | ||||
|   assert archs[0  ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) | ||||
|   assert archs[9  ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) | ||||
|   assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) | ||||
|   total_arch = len(archs) | ||||
|    | ||||
|   num = 50000 | ||||
|   indexes_5W = list(range(num)) | ||||
|   random.seed( 1021 ) | ||||
|   random.shuffle( indexes_5W ) | ||||
|   train_split = sorted( list(set(indexes_5W[:num//2])) ) | ||||
|   valid_split = sorted( list(set(indexes_5W[num//2:])) ) | ||||
|   assert len(train_split) + len(valid_split) == num | ||||
|   assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) | ||||
|   splits = {num: {'train': train_split, 'valid': valid_split} } | ||||
|  | ||||
|   info = {'archs' : [x.tostr() for x in archs], | ||||
|           'total' : total_arch, | ||||
|           'max_node' : max_node, | ||||
|           'splits': splits} | ||||
|  | ||||
|   save_dir = Path(save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) | ||||
|   assert not save_name.exists(), '{:} already exist'.format(save_name) | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
|  | ||||
|   script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) | ||||
|   full_file = open(str(script_name_full), 'w') | ||||
|   less_file = open(str(script_name_less), 'w') | ||||
|   gaps = total_arch // divide | ||||
|   for start in range(0, total_arch, gaps): | ||||
|     xend = min(start+gaps, total_arch) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) | ||||
|   full_file.close() | ||||
|   less_file.close() | ||||
|  | ||||
|   script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) | ||||
|   macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   #parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--arch_index',  type=int,   default=-1,     help='The architecture index to be evaluated (cover mode).') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--use_less',    type=int,   default=0, choices=[0,1], help='Using the less-training-epoch config.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,                   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,                   help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) | ||||
|  | ||||
|   if args.mode == 'meta': | ||||
|     generate_meta_info(args.save_dir, args.max_node) | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|     assert meta_path.exists(), '{:} does not exist.'.format(meta_path) | ||||
|     meta_info = torch.load( meta_path ) | ||||
|     # check whether args is ok | ||||
|     assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) | ||||
|     assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
							
								
								
									
										295
									
								
								exps/NAS-Bench-201/statistics.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										295
									
								
								exps/NAS-Bench-201/statistics.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,295 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from functions    import pure_evaluate | ||||
|  | ||||
|  | ||||
|  | ||||
| def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): | ||||
|   xresult     = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \ | ||||
|                                results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) | ||||
|  | ||||
|   net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) | ||||
|   network = get_cell_based_tiny_net(net_config) | ||||
|   network.load_state_dict(xresult.get_net_param()) | ||||
|   if 'train_times' in results: # new version | ||||
|     xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) | ||||
|     xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) | ||||
|   else: | ||||
|     if dataset == 'cifar10-valid': | ||||
|       xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar10': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) | ||||
|       xresult.update_latency(latencies) | ||||
|     elif dataset == 'cifar100' or dataset == 'ImageNet16-120': | ||||
|       xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset,  'test')], network.cuda()) | ||||
|       xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) | ||||
|       xresult.update_latency(latencies) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset name : {:}'.format(dataset)) | ||||
|   return xresult | ||||
|    | ||||
|  | ||||
|  | ||||
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): | ||||
|   information = ArchResults(arch_index, arch_str) | ||||
|  | ||||
|   for checkpoint_path in checkpoints: | ||||
|     checkpoint = torch.load(checkpoint_path, map_location='cpu') | ||||
|     used_seed  = checkpoint_path.name.split('-')[-1].split('.')[0] | ||||
|     for dataset in datasets: | ||||
|       assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path) | ||||
|       results     = checkpoint[dataset] | ||||
|       assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) | ||||
|       arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} | ||||
|        | ||||
|       xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) | ||||
|       information.update(dataset, int(used_seed), xresult) | ||||
|   return information | ||||
|  | ||||
|  | ||||
|  | ||||
| def GET_DataLoaders(workers): | ||||
|  | ||||
|   torch.set_num_threads(workers) | ||||
|  | ||||
|   root_dir  = (Path(__file__).parent / '..' / '..').resolve() | ||||
|   torch_dir = Path(os.environ['TORCH_HOME']) | ||||
|   # cifar | ||||
|   cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' | ||||
|   cifar_config = load_config(cifar_config_path, None, None) | ||||
|   print ('{:} Create data-loader for all datasets'.format(time_string())) | ||||
|   print ('-'*200) | ||||
|   TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) | ||||
|   cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) | ||||
|   assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] | ||||
|   temp_dataset = deepcopy(TRAIN_CIFAR10) | ||||
|   temp_dataset.transform = VALID_CIFAR10.transform | ||||
|   # data loader | ||||
|   trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|   train_cifar10_loader    = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) | ||||
|   valid_cifar10_loader    = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar10_loader    = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-10  : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('CIFAR-10  : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) | ||||
|   print ('-'*200) | ||||
|   # CIFAR-100 | ||||
|   TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) | ||||
|   print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) | ||||
|   cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) | ||||
|   assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] | ||||
|   train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('CIFAR-100  : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) | ||||
|   print ('CIFAR-100  : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) | ||||
|   print ('CIFAR-100  : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) | ||||
|   print ('-'*200) | ||||
|  | ||||
|   imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|   imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||
|   TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) | ||||
|   print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) | ||||
|   imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) | ||||
|   assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] | ||||
|   train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) | ||||
|   valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) | ||||
|   test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) | ||||
|   print ('ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) | ||||
|   print ('ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) | ||||
|  | ||||
|   # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||
|   loaders = {'cifar10@trainval': trainval_cifar10_loader, | ||||
|              'cifar10@train'   : train_cifar10_loader, | ||||
|              'cifar10@valid'   : valid_cifar10_loader, | ||||
|              'cifar10@test'    : test__cifar10_loader, | ||||
|              'cifar100@train'  : train_cifar100_loader, | ||||
|              'cifar100@valid'  : valid_cifar100_loader, | ||||
|              'cifar100@test'   : test__cifar100_loader, | ||||
|              'ImageNet16-120@train': train_imagenet_loader, | ||||
|              'ImageNet16-120@valid': valid_imagenet_loader, | ||||
|              'ImageNet16-120@test' : test__imagenet_loader} | ||||
|   return loaders | ||||
|  | ||||
|  | ||||
|  | ||||
| def simplify(save_dir, meta_file, basestr, target_dir): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] # a list of architecture strings | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) | ||||
|  | ||||
|   dataloader_dict = GET_DataLoaders( 6 ) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   to_save_allarc = save_dir / 'simplifies' / 'architectures' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) | ||||
|   arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') | ||||
|   evaluated_indexes    = set() | ||||
|   target_directory     = save_dir / target_dir | ||||
|   target_less_dir      = save_dir / '{:}-LESS'.format(target_dir) | ||||
|   arch_indexes         = subdir2archs[ target_directory ] | ||||
|   num_seeds            = defaultdict(lambda: 0) | ||||
|   end_time             = time.time() | ||||
|   arch_time            = AverageMeter() | ||||
|   for idx, arch_index in enumerate(arch_indexes): | ||||
|     checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     ckps_less   = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) | ||||
|     # create the arch info for each architecture | ||||
|     try: | ||||
|       arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) | ||||
|       arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict) | ||||
|       num_seeds[ len(checkpoints) ] += 1 | ||||
|     except: | ||||
|       print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) | ||||
|       continue | ||||
|     assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) | ||||
|     assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|     arch_info = {'full': arch_info_full, 'less': arch_info_less} | ||||
|     evaluated_indexes.add( int(arch_index) ) | ||||
|     arch2infos[int(arch_index)] = arch_info | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) | ||||
|     arch_info['full'].clear_params() | ||||
|     arch_info['less'].clear_params() | ||||
|     torch.save({'full': arch_info_full.state_dict(), | ||||
|                 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) | ||||
|     # measure elapsed time | ||||
|     arch_time.update(time.time() - end_time) | ||||
|     end_time  = time.time() | ||||
|     need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) | ||||
|     print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) | ||||
|   # measure time | ||||
|   xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] | ||||
|   print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'basestr'    : basestr, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}.pth'.format(target_dir) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
|  | ||||
| def merge_all(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) | ||||
|     print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) | ||||
|    | ||||
|   arch2infos, evaluated_indexes = dict(), set() | ||||
|   for IDX, sub_dir in enumerate(sub_model_dirs): | ||||
|     ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) | ||||
|     if ckp_path.exists(): | ||||
|       sub_ckps = torch.load(ckp_path, map_location='cpu') | ||||
|       assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr | ||||
|       xarch2infos = sub_ckps['arch2infos'] | ||||
|       xevalindexs = sub_ckps['evaluated_indexes'] | ||||
|       for eval_index in xevalindexs: | ||||
|         assert eval_index not in evaluated_indexes and eval_index not in arch2infos | ||||
|         #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() | ||||
|         arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), | ||||
|                                   'less': xarch2infos[eval_index]['less'].state_dict()} | ||||
|         evaluated_indexes.add( eval_index ) | ||||
|       print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) | ||||
|     else: | ||||
|       raise ValueError('Can not find {:}'.format(ckp_path)) | ||||
|       #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) | ||||
|  | ||||
|   evaluated_indexes = sorted( list( evaluated_indexes ) ) | ||||
|   print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) | ||||
|  | ||||
|   to_save_simply = save_dir / 'simplifies' | ||||
|   if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) | ||||
|   final_infos = {'meta_archs' : meta_archs, | ||||
|                  'total_archs': meta_num_archs, | ||||
|                  'arch2infos' : arch2infos, | ||||
|                  'evaluated_indexes': evaluated_indexes} | ||||
|   save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) | ||||
|   torch.save(final_infos, save_file_name) | ||||
|   print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
|   parser.add_argument('--num_cells'    ,  type=int, default=5,                           help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path( args.base_save_dir ) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) | ||||
|   basestr   = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|    | ||||
|   if args.mode == 'cal': | ||||
|     simplify(save_dir, meta_path, basestr, args.target_dir) | ||||
|   elif args.mode == 'merge': | ||||
|     merge_all(save_dir, meta_path, basestr) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
							
								
								
									
										223
									
								
								exps/NAS-Bench-201/test-correlation.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										223
									
								
								exps/NAS-Bench-201/test-correlation.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,223 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # python exps/NAS-Bench-201/test-correlation.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ######################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| from tqdm import tqdm | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces, CellStructure | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|    | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.eval() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': | ||||
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|     cifar_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   elif xargs.dataset.startswith('ImageNet16'): | ||||
|     split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) | ||||
|     imagenet16_split = load_config(split_Fpath, None, None) | ||||
|     train_split, valid_split = imagenet16_split.train, imagenet16_split.valid | ||||
|     logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) | ||||
|   config_path = 'configs/nas-benchmark/algos/DARTS.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells, | ||||
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num, | ||||
|                               'space'    : search_space}, None) | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   logger.log('search-model :\n{:}'.format(search_model)) | ||||
|    | ||||
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) | ||||
|   a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) | ||||
|   logger.log('w-optimizer : {:}'.format(w_optimizer)) | ||||
|   logger.log('a-optimizer : {:}'.format(a_optimizer)) | ||||
|   logger.log('w-scheduler : {:}'.format(w_scheduler)) | ||||
|   logger.log('criterion   : {:}'.format(criterion)) | ||||
|   flop, param  = get_model_infos(search_model, xshape) | ||||
|   #logger.log('{:}'.format(search_model)) | ||||
|   logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) | ||||
|   if xargs.arch_nas_dataset is None: | ||||
|     api = None | ||||
|   else: | ||||
|     api = API(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} create API = {:} done'.format(time_string(), api)) | ||||
|  | ||||
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') | ||||
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() | ||||
|  | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
| def check_unique_arch(meta_file): | ||||
|   api = API(str(meta_file)) | ||||
|   arch_strs = deepcopy(api.meta_archs) | ||||
|   xarchs = [CellStructure.str2structure(x) for x in arch_strs] | ||||
|   def get_unique_matrix(archs, consider_zero): | ||||
|     UniquStrs = [arch.to_unique_str(consider_zero) for arch in archs] | ||||
|     print ('{:} create unique-string ({:}/{:}) done'.format(time_string(), len(set(UniquStrs)), len(UniquStrs))) | ||||
|     Unique2Index = dict() | ||||
|     for index, xstr in enumerate(UniquStrs): | ||||
|       if xstr not in Unique2Index: Unique2Index[xstr] = list() | ||||
|       Unique2Index[xstr].append( index ) | ||||
|     sm_matrix = torch.eye(len(archs)).bool() | ||||
|     for _, xlist in Unique2Index.items(): | ||||
|       for i in xlist: | ||||
|         for j in xlist: | ||||
|           sm_matrix[i,j] = True | ||||
|     unique_ids, unique_num = [-1 for _ in archs], 0 | ||||
|     for i in range(len(unique_ids)): | ||||
|       if unique_ids[i] > -1: continue | ||||
|       neighbours = sm_matrix[i].nonzero().view(-1).tolist() | ||||
|       for nghb in neighbours: | ||||
|         assert unique_ids[nghb] == -1, 'impossible' | ||||
|         unique_ids[nghb] = unique_num | ||||
|       unique_num += 1 | ||||
|     return sm_matrix, unique_ids, unique_num | ||||
|  | ||||
|   print ('There are {:} valid-archs'.format( sum(arch.check_valid() for arch in xarchs) )) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, None) | ||||
|   print ('{:} There are {:} unique architectures (considering nothing).'.format(time_string(), unique_num)) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs, False) | ||||
|   print ('{:} There are {:} unique architectures (not considering zero).'.format(time_string(), unique_num)) | ||||
|   sm_matrix, uniqueIDs, unique_num = get_unique_matrix(xarchs,  True) | ||||
|   print ('{:} There are {:} unique architectures (considering zero).'.format(time_string(), unique_num)) | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True, need_print=False): | ||||
|   if isinstance(meta_file, API): | ||||
|     api = meta_file | ||||
|   else: | ||||
|     api = API(str(meta_file)) | ||||
|   cifar10_currs     = [] | ||||
|   cifar10_valid     = [] | ||||
|   cifar10_test      = [] | ||||
|   cifar100_valid    = [] | ||||
|   cifar100_test     = [] | ||||
|   imagenet_test     = [] | ||||
|   imagenet_valid    = [] | ||||
|   for idx, arch in enumerate(api): | ||||
|     results = api.get_more_info(idx, 'cifar10-valid' , test_epoch-1, use_less_or_not, is_rand) | ||||
|     cifar10_currs.append( results['valid-accuracy'] ) | ||||
|     # --->>>>> | ||||
|     results = api.get_more_info(idx, 'cifar10-valid' , None, False, is_rand) | ||||
|     cifar10_valid.append( results['valid-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'cifar10'       , None, False, is_rand) | ||||
|     cifar10_test.append( results['test-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'cifar100'      , None, False, is_rand) | ||||
|     cifar100_test.append( results['test-accuracy'] ) | ||||
|     cifar100_valid.append( results['valid-accuracy'] ) | ||||
|     results = api.get_more_info(idx, 'ImageNet16-120', None, False, is_rand) | ||||
|     imagenet_test.append( results['test-accuracy'] ) | ||||
|     imagenet_valid.append( results['valid-accuracy'] ) | ||||
|   def get_cor(A, B): | ||||
|     return float(np.corrcoef(A, B)[0,1]) | ||||
|   cors = [] | ||||
|   for basestr, xlist in zip(['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'], [cifar10_valid, cifar10_test, cifar100_valid, cifar100_test, imagenet_valid, imagenet_test]): | ||||
|     correlation = get_cor(cifar10_currs, xlist) | ||||
|     if need_print: print ('With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, '012' if use_less_or_not else '200', basestr, correlation)) | ||||
|     cors.append( correlation ) | ||||
|     #print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist))) | ||||
|     #print('-'*200) | ||||
|   #print('*'*230) | ||||
|   return cors | ||||
|  | ||||
|  | ||||
| def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand): | ||||
|   corrs = [] | ||||
|   for i in tqdm(range(100)): | ||||
|     x = check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand, False) | ||||
|     corrs.append( x ) | ||||
|   #xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|   xstrs = ['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'] | ||||
|   correlations = np.array(corrs) | ||||
|   print('------>>>>>>>> {:03d}/{:} >>>>>>>> ------'.format(test_epoch, '012' if use_less_or_not else '200')) | ||||
|   for idx, xstr in enumerate(xstrs): | ||||
|     print ('{:8s} ::: mean={:.4f}, std={:.4f} :: {:.4f}\\pm{:.4f}'.format(xstr, correlations[:,idx].mean(), correlations[:,idx].std(), correlations[:,idx].mean(), correlations[:,idx].std())) | ||||
|   print('') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   vis_save_dir = Path(args.save_dir) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.api_path) | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|  | ||||
|   #check_unique_arch(meta_file) | ||||
|   api = API(str(meta_file)) | ||||
|   #for iepoch in [11, 25, 50, 100, 150, 175, 200]: | ||||
|   #  check_cor_for_bandit(api,  6, iepoch) | ||||
|   #  check_cor_for_bandit(api, 12, iepoch) | ||||
|   check_cor_for_bandit_v2(api,   6,  True, True) | ||||
|   check_cor_for_bandit_v2(api,  12,  True, True) | ||||
|   check_cor_for_bandit_v2(api,  12, False, True) | ||||
|   check_cor_for_bandit_v2(api,  24, False, True) | ||||
|   check_cor_for_bandit_v2(api, 100, False, True) | ||||
|   check_cor_for_bandit_v2(api, 150, False, True) | ||||
|   check_cor_for_bandit_v2(api, 175, False, True) | ||||
|   check_cor_for_bandit_v2(api, 200, False, True) | ||||
|   print('----') | ||||
							
								
								
									
										740
									
								
								exps/NAS-Bench-201/visualize.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										740
									
								
								exps/NAS-Bench-201/visualize.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,740 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # python exps/NAS-Bench-201/visualize.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from tqdm import tqdm | ||||
| from collections import OrderedDict | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| from mpl_toolkits.mplot3d import Axes3D | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import time_string | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
|  | ||||
| def calculate_correlation(*vectors): | ||||
|   matrix = [] | ||||
|   for i, vectori in enumerate(vectors): | ||||
|     x = [] | ||||
|     for j, vectorj in enumerate(vectors): | ||||
|       x.append( np.corrcoef(vectori, vectorj)[0,1] ) | ||||
|     matrix.append( x ) | ||||
|   return np.array(matrix) | ||||
|  | ||||
|  | ||||
|  | ||||
| def visualize_relative_ranking(vis_save_dir): | ||||
|   print ('\n' + '-'*100) | ||||
|   cifar010_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('cifar10') | ||||
|   cifar100_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('cifar100') | ||||
|   imagenet_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('ImageNet16-120') | ||||
|   cifar010_info = torch.load(cifar010_cache_path) | ||||
|   cifar100_info = torch.load(cifar100_cache_path) | ||||
|   imagenet_info = torch.load(imagenet_cache_path) | ||||
|   indexes       = list(range(len(cifar010_info['params']))) | ||||
|  | ||||
|   print ('{:} start to visualize relative ranking'.format(time_string())) | ||||
|   # maximum accuracy with ResNet-level params 11472 | ||||
|   x_010_accs    = [ cifar010_info['test_accs'][i] if cifar010_info['params'][i] <= cifar010_info['params'][11472] else -1 for i in indexes] | ||||
|   x_100_accs    = [ cifar100_info['test_accs'][i] if cifar100_info['params'][i] <= cifar100_info['params'][11472] else -1 for i in indexes] | ||||
|   x_img_accs    = [ imagenet_info['test_accs'][i] if imagenet_info['params'][i] <= imagenet_info['params'][11472] else -1 for i in indexes] | ||||
|   | ||||
|   cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i]) | ||||
|   cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i]) | ||||
|   imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i]) | ||||
|  | ||||
|   cifar100_labels, imagenet_labels = [], [] | ||||
|   for idx in cifar010_ord_indexes: | ||||
|     cifar100_labels.append( cifar100_ord_indexes.index(idx) ) | ||||
|     imagenet_labels.append( imagenet_ord_indexes.index(idx) ) | ||||
|   print ('{:} prepare data done.'.format(time_string())) | ||||
|  | ||||
|   dpi, width, height = 300, 2600, 2600 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 18, 18 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(min(indexes), max(indexes)) | ||||
|   plt.ylim(min(indexes), max(indexes)) | ||||
|   #plt.ylabel('y').set_rotation(0) | ||||
|   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize, rotation='vertical') | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize) | ||||
|   #ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8, label='CIFAR-100') | ||||
|   #ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8, label='ImageNet-16-120') | ||||
|   #ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8, label='CIFAR-10') | ||||
|   ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|   ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||
|   ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10') | ||||
|   ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100') | ||||
|   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='ImageNet-16-120') | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize) | ||||
|   ax.set_ylabel('architecture ranking', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / 'relative-rank.pdf').resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / 'relative-rank.png').resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|   # calculate correlation | ||||
|   sns_size = 15 | ||||
|   CoRelMatrix = calculate_correlation(cifar010_info['valid_accs'], cifar010_info['test_accs'], cifar100_info['valid_accs'], cifar100_info['test_accs'], imagenet_info['valid_accs'], imagenet_info['test_accs']) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   plt.axis('off') | ||||
|   h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt='.3f', linewidths=0.5)   | ||||
|   save_path = (vis_save_dir / 'co-relation-all.pdf').resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|   # calculate correlation | ||||
|   acc_bars = [92, 93] | ||||
|   for acc_bar in acc_bars: | ||||
|     selected_indexes = [] | ||||
|     for i, acc in enumerate(cifar010_info['test_accs']): | ||||
|       if acc > acc_bar: selected_indexes.append( i ) | ||||
|     print ('select {:} architectures'.format(len(selected_indexes))) | ||||
|     cifar010_valid_accs = np.array(cifar010_info['valid_accs'])[ selected_indexes ] | ||||
|     cifar010_test_accs  = np.array(cifar010_info['test_accs']) [ selected_indexes ] | ||||
|     cifar100_valid_accs = np.array(cifar100_info['valid_accs'])[ selected_indexes ] | ||||
|     cifar100_test_accs  = np.array(cifar100_info['test_accs']) [ selected_indexes ] | ||||
|     imagenet_valid_accs = np.array(imagenet_info['valid_accs'])[ selected_indexes ] | ||||
|     imagenet_test_accs  = np.array(imagenet_info['test_accs']) [ selected_indexes ] | ||||
|     CoRelMatrix = calculate_correlation(cifar010_valid_accs, cifar010_test_accs, cifar100_valid_accs, cifar100_test_accs, imagenet_valid_accs, imagenet_test_accs) | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     plt.axis('off') | ||||
|     h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt='.3f', linewidths=0.5) | ||||
|     save_path = (vis_save_dir / 'co-relation-top-{:}.pdf'.format(len(selected_indexes))).resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|     print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
|  | ||||
| def visualize_info(meta_file, dataset, vis_save_dir): | ||||
|   print ('{:} start to visualize {:} information'.format(time_string(), dataset)) | ||||
|   cache_file_path = vis_save_dir / '{:}-cache-info.pth'.format(dataset) | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     nas_bench = API(str(meta_file)) | ||||
|     params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], [], [], [], [] | ||||
|     for index in range( len(nas_bench) ): | ||||
|       info = nas_bench.query_by_index(index, use_12epochs_result=False) | ||||
|       resx = info.get_comput_costs(dataset) ; flop, param = resx['flops'], resx['params'] | ||||
|       if dataset == 'cifar10': | ||||
|         res = info.get_metrics('cifar10', 'train')         ; train_acc = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10-valid', 'x-valid') ; valid_acc = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10', 'ori-test')      ; test_acc  = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10', 'ori-test')      ; otest_acc = res['accuracy'] | ||||
|       else: | ||||
|         res = info.get_metrics(dataset, 'train')    ; train_acc = res['accuracy'] | ||||
|         res = info.get_metrics(dataset, 'x-valid')  ; valid_acc = res['accuracy'] | ||||
|         res = info.get_metrics(dataset, 'x-test')   ; test_acc  = res['accuracy'] | ||||
|         res = info.get_metrics(dataset, 'ori-test') ; otest_acc = res['accuracy'] | ||||
|       if index == 11472: # resnet | ||||
|         resnet = {'params':param, 'flops': flop, 'index': 11472, 'train_acc': train_acc, 'valid_acc': valid_acc, 'test_acc': test_acc, 'otest_acc': otest_acc} | ||||
|       flops.append( flop ) | ||||
|       params.append( param ) | ||||
|       train_accs.append( train_acc ) | ||||
|       valid_accs.append( valid_acc ) | ||||
|       test_accs.append( test_acc ) | ||||
|       otest_accs.append( otest_acc ) | ||||
|     #resnet = {'params': 0.559, 'flops': 78.56, 'index': 11472, 'train_acc': 99.99, 'valid_acc': 90.84, 'test_acc': 93.97} | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs, 'otest_accs': otest_accs} | ||||
|     info['resnet'] = resnet | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs, otest_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'], info['otest_accs'] | ||||
|     resnet = info['resnet'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|  | ||||
|   indexes = list(range(len(params))) | ||||
|   dpi, width, height = 300, 2600, 2600 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 22, 22 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | ||||
|   if dataset == 'cifar10': | ||||
|     plt.ylim(50, 100) | ||||
|     plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | ||||
|   elif dataset == 'cifar100': | ||||
|     plt.ylim(25,  75) | ||||
|     plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | ||||
|   else: | ||||
|     plt.ylim(0, 50) | ||||
|     plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | ||||
|   ax.scatter(params, valid_accs, marker='o', s=0.5, c='tab:blue')  | ||||
|   ax.scatter([resnet['params']], [resnet['valid_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=0.4)  | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax.set_ylabel('the validation accuracy (%)', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-valid.pdf'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-valid.png'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | ||||
|   if dataset == 'cifar10': | ||||
|     plt.ylim(50, 100) | ||||
|     plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | ||||
|   elif dataset == 'cifar100': | ||||
|     plt.ylim(25,  75) | ||||
|     plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | ||||
|   else: | ||||
|     plt.ylim(0, 50) | ||||
|     plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | ||||
|   ax.scatter(params,  test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax.scatter([resnet['params']], [resnet['test_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) | ||||
|   plt.grid() | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax.set_ylabel('the test accuracy (%)', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-test.pdf'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-test.png'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) | ||||
|   if dataset == 'cifar10': | ||||
|     plt.ylim(50, 100) | ||||
|     plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | ||||
|   elif dataset == 'cifar100': | ||||
|     plt.ylim(20, 100) | ||||
|     plt.yticks(np.arange(20, 101, 10), fontsize=LegendFontsize) | ||||
|   else: | ||||
|     plt.ylim(25,  76) | ||||
|     plt.yticks(np.arange(25,  76, 10), fontsize=LegendFontsize) | ||||
|   ax.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax.scatter([resnet['params']], [resnet['train_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) | ||||
|   plt.grid() | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) | ||||
|   ax.set_ylabel('the trarining accuracy (%)', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-train.pdf'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-param-vs-train.png'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||
|   if dataset == 'cifar10': | ||||
|     plt.ylim(50, 100) | ||||
|     plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) | ||||
|   elif dataset == 'cifar100': | ||||
|     plt.ylim(25,  75) | ||||
|     plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) | ||||
|   else: | ||||
|     plt.ylim(0, 50) | ||||
|     plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) | ||||
|   ax.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') | ||||
|   ax.scatter([resnet['index']], [resnet['test_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) | ||||
|   plt.grid() | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ID', fontsize=LabelSize) | ||||
|   ax.set_ylabel('the test accuracy (%)', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-test-over-ID.pdf'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-test-over-ID.png'.format(dataset)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
|  | ||||
| def visualize_rank_over_time(meta_file, vis_save_dir): | ||||
|   print ('\n' + '-'*150) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   print ('{:} start to visualize rank-over-time into {:}'.format(time_string(), vis_save_dir)) | ||||
|   cache_file_path = vis_save_dir / 'rank-over-time-cache-info.pth' | ||||
|   if not cache_file_path.exists(): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     nas_bench = API(str(meta_file)) | ||||
|     print ('{:} load nas_bench done'.format(time_string())) | ||||
|     params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], defaultdict(list), defaultdict(list), defaultdict(list), defaultdict(list) | ||||
|     #for iepoch in range(200): for index in range( len(nas_bench) ): | ||||
|     for index in tqdm(range(len(nas_bench))): | ||||
|       info = nas_bench.query_by_index(index, use_12epochs_result=False) | ||||
|       for iepoch in range(200): | ||||
|         res = info.get_metrics('cifar10'      , 'train'   , iepoch) ; train_acc = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10-valid', 'x-valid' , iepoch) ; valid_acc = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10'      , 'ori-test', iepoch) ; test_acc  = res['accuracy'] | ||||
|         res = info.get_metrics('cifar10'      , 'ori-test', iepoch) ; otest_acc = res['accuracy'] | ||||
|         train_accs[iepoch].append( train_acc ) | ||||
|         valid_accs[iepoch].append( valid_acc ) | ||||
|         test_accs [iepoch].append( test_acc ) | ||||
|         otest_accs[iepoch].append( otest_acc ) | ||||
|         if iepoch == 0: | ||||
|           res = info.get_comput_costs('cifar10') ; flop, param = res['flops'], res['params'] | ||||
|           flops.append( flop ) | ||||
|           params.append( param ) | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs, 'otest_accs': otest_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|     print ('Find cache file : {:}'.format(cache_file_path)) | ||||
|     info = torch.load(cache_file_path) | ||||
|     params, flops, train_accs, valid_accs, test_accs, otest_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'], info['otest_accs'] | ||||
|   print ('{:} collect data done.'.format(time_string())) | ||||
|   #selected_epochs = [0, 100, 150, 180, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199] | ||||
|   selected_epochs = list( range(200) ) | ||||
|   x_xtests = test_accs[199] | ||||
|   indexes  = list(range(len(x_xtests))) | ||||
|   ord_idxs = sorted(indexes, key=lambda i: x_xtests[i]) | ||||
|   for sepoch in selected_epochs: | ||||
|     x_valids = valid_accs[sepoch] | ||||
|     valid_ord_idxs = sorted(indexes, key=lambda i: x_valids[i]) | ||||
|     valid_ord_lbls = [] | ||||
|     for idx in ord_idxs: | ||||
|       valid_ord_lbls.append( valid_ord_idxs.index(idx) ) | ||||
|     # labeled data | ||||
|     dpi, width, height = 300, 2600, 2600 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|     LabelSize, LegendFontsize = 18, 18 | ||||
|  | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     ax  = fig.add_subplot(111) | ||||
|     plt.xlim(min(indexes), max(indexes)) | ||||
|     plt.ylim(min(indexes), max(indexes)) | ||||
|     plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize, rotation='vertical') | ||||
|     plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize) | ||||
|     ax.scatter(indexes, valid_ord_lbls, marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|     ax.scatter(indexes, indexes       , marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|     ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-10 validation') | ||||
|     ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10 test') | ||||
|     plt.grid(zorder=0) | ||||
|     ax.set_axisbelow(True) | ||||
|     plt.legend(loc='upper left', fontsize=LegendFontsize) | ||||
|     ax.set_xlabel('architecture ranking in the final test accuracy', fontsize=LabelSize) | ||||
|     ax.set_ylabel('architecture ranking in the validation set', fontsize=LabelSize) | ||||
|     save_path = (vis_save_dir / 'time-{:03d}.pdf'.format(sepoch)).resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|     save_path = (vis_save_dir / 'time-{:03d}.png'.format(sepoch)).resolve() | ||||
|     fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|     print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|     plt.close('all') | ||||
|  | ||||
|  | ||||
|  | ||||
| def write_video(save_dir): | ||||
|   import cv2 | ||||
|   video_save_path = save_dir / 'time.avi' | ||||
|   print ('{:} start create video for {:}'.format(time_string(), video_save_path)) | ||||
|   images = sorted( list( save_dir.glob('time-*.png') ) ) | ||||
|   ximage = cv2.imread(str(images[0])) | ||||
|   #shape  = (ximage.shape[1], ximage.shape[0]) | ||||
|   shape  = (1000, 1000) | ||||
|   #writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 25, shape) | ||||
|   writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape) | ||||
|   for idx, image in enumerate(images): | ||||
|     ximage = cv2.imread(str(image)) | ||||
|     _image = cv2.resize(ximage, shape) | ||||
|     writer.write(_image) | ||||
|   writer.release() | ||||
|   print ('write video [{:} frames] into {:}'.format(len(images), video_save_path)) | ||||
|  | ||||
|  | ||||
|  | ||||
| def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_lims): | ||||
|   #print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   print ('root-path : {:} and {:}'.format(dataset_xset_a, dataset_xset_b)) | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/RAND-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth' | ||||
|                 ] | ||||
|   legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None | ||||
|   All_Accs_A, All_Accs_B = OrderedDict(), OrderedDict() | ||||
|   for legend, checkpoint in zip(legends, checkpoints): | ||||
|     all_indexes = torch.load(checkpoint, map_location='cpu') | ||||
|     accuracies_A, accuracies_B = [], [] | ||||
|     accuracies = [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset_xset_a[0], dataset_xset_a[1], None, False) | ||||
|       accuracies_A.append( metrics['accuracy'] ) | ||||
|       metrics = info.get_metrics(dataset_xset_b[0], dataset_xset_b[1], None, False) | ||||
|       accuracies_B.append( metrics['accuracy'] ) | ||||
|       accuracies.append( (accuracies_A[-1], accuracies_B[-1]) ) | ||||
|     if indexes is None: indexes = list(range(len(all_indexes))) | ||||
|     accuracies = sorted(accuracies) | ||||
|     All_Accs_A[legend] = [x[0] for x in accuracies] | ||||
|     All_Accs_B[legend] = [x[1] for x in accuracies] | ||||
|  | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   for idx, legend in enumerate(legends): | ||||
|     plt.plot(indexes, All_Accs_B[legend], color=color_set[idx], linestyle='--', label='{:}'.format(legend), lw=1, alpha=0.5) | ||||
|     plt.plot(indexes, All_Accs_A[legend], color=color_set[idx], linestyle='-', lw=1) | ||||
|     for All_Accs in [All_Accs_A, All_Accs_B]: | ||||
|       print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(All_Accs[legend]), np.std(All_Accs[legend]), np.mean(All_Accs[legend]), np.std(All_Accs[legend]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}'.format(file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| def plot_results_nas(api, dataset, xset, root, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/RAND-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth' | ||||
|                 ] | ||||
|   legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None | ||||
|   All_Accs = OrderedDict() | ||||
|   for legend, checkpoint in zip(legends, checkpoints): | ||||
|     all_indexes = torch.load(checkpoint, map_location='cpu') | ||||
|     accuracies  = [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset, xset, None, False) | ||||
|       accuracies.append( metrics['accuracy'] ) | ||||
|     if indexes is None: indexes = list(range(len(all_indexes))) | ||||
|     All_Accs[legend] = sorted(accuracies) | ||||
|    | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   for idx, legend in enumerate(legends): | ||||
|     plt.plot(indexes, All_Accs[legend], color=color_set[idx], linestyle='-', label='{:}'.format(legend), lw=2) | ||||
|     print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(All_Accs[legend]), np.std(All_Accs[legend]), np.mean(All_Accs[legend]), np.std(All_Accs[legend]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}-{:}-{:}'.format(dataset, xset, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| def just_show(api): | ||||
|   xtimes = {'RSPS'    : [8082.5, 7794.2, 8144.7], | ||||
|             'DARTS-V1': [11582.1, 11347.0, 11948.2], | ||||
|             'DARTS-V2': [35694.7, 36132.7, 35518.0], | ||||
|             'GDAS'    : [31334.1, 31478.6, 32016.7], | ||||
|             'SETN'    : [33528.8, 33831.5, 35058.3], | ||||
|             'ENAS'    : [14340.2, 13817.3, 14018.9]} | ||||
|   for xkey, xlist in xtimes.items(): | ||||
|     xlist = np.array(xlist) | ||||
|     print ('{:4s} : mean-time={:.2f} s'.format(xkey, xlist.mean())) | ||||
|  | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
|  | ||||
|   def get_accs(xdata, index=-1): | ||||
|     if index == -1: | ||||
|       epochs = xdata['epoch'] | ||||
|       genotype = xdata['genotypes'][epochs-1] | ||||
|       index = api.query_index_by_arch(genotype) | ||||
|     pairs = [('cifar10-valid', 'x-valid'), ('cifar10', 'ori-test'), ('cifar100', 'x-valid'), ('cifar100', 'x-test'), ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test')] | ||||
|     xresults = [] | ||||
|     for dataset, xset in pairs: | ||||
|       metrics = api.arch2infos_full[index].get_metrics(dataset, xset, None, False) | ||||
|       xresults.append( metrics['accuracy'] ) | ||||
|     return xresults | ||||
|  | ||||
|   for xkey in xpaths.keys(): | ||||
|     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] | ||||
|     all_datas = [torch.load(xpath) for xpath in all_paths] | ||||
|     accyss = [get_accs(xdatas) for xdatas in all_datas] | ||||
|     accyss = np.array( accyss ) | ||||
|     print('\nxkey = {:}'.format(xkey)) | ||||
|     for i in range(accyss.shape[1]): print('---->>>> {:.2f}$\\pm${:.2f}'.format(accyss[:,i].mean(), accyss[:,i].std())) | ||||
|  | ||||
|   print('\n{:}'.format(get_accs(None, 11472))) # resnet | ||||
|   pairs = [('cifar10-valid', 'x-valid'), ('cifar10', 'ori-test'), ('cifar100', 'x-valid'), ('cifar100', 'x-test'), ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test')] | ||||
|   for dataset, metric_on_set in pairs: | ||||
|     arch_index, highest_acc = api.find_best(dataset, metric_on_set) | ||||
|     print ('[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}'.format(dataset, metric_on_set, arch_index, highest_acc)) | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_maxs): | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   #x_maxs = 250 | ||||
|   plt.xlim(0, x_maxs+1) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = x_maxs // 5, y_lims[2] | ||||
|   plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
|  | ||||
|   def get_accs(xdata): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
|     if -1 in xdata['genotypes']: | ||||
|       metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False) | ||||
|     else: | ||||
|       metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False) | ||||
|     xresults.append( metrics['accuracy'] ) | ||||
|     for iepoch in range(epochs): | ||||
|       genotype = xdata['genotypes'][iepoch] | ||||
|       index = api.query_index_by_arch(genotype) | ||||
|       metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False) | ||||
|       xresults.append( metrics['accuracy'] ) | ||||
|     return xresults | ||||
|  | ||||
|   if x_maxs == 50: | ||||
|     xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2'] | ||||
|   elif x_maxs == 250: | ||||
|     xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS'] | ||||
|   else: raise ValueError('invalid x_maxs={:}'.format(x_maxs)) | ||||
|  | ||||
|   for idx, method in enumerate(xxxstrs): | ||||
|     xkey = method | ||||
|     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] | ||||
|     all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths] | ||||
|     accyss = [get_accs(xdatas) for xdatas in all_datas] | ||||
|     accyss = np.array( accyss ) | ||||
|     epochs = list(range(accyss.shape[1])) | ||||
|     plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx], linestyle='-', label='{:}'.format(method), lw=2) | ||||
|     plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx]) | ||||
|   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   save_path = vis_save_dir / '{:}-{:}-{:}-{:}'.format(xox, dataset, subset, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, y_lims, x_maxs): | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   #x_maxs = 250 | ||||
|   plt.xlim(0, x_maxs+1) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = x_maxs // 5, y_lims[2] | ||||
|   plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
|  | ||||
|   def get_accs(xdata, dataset, subset): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
|     if -1 in xdata['genotypes']: | ||||
|       metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False) | ||||
|     else: | ||||
|       metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False) | ||||
|     xresults.append( metrics['accuracy'] ) | ||||
|     for iepoch in range(epochs): | ||||
|       genotype = xdata['genotypes'][iepoch] | ||||
|       index = api.query_index_by_arch(genotype) | ||||
|       metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False) | ||||
|       xresults.append( metrics['accuracy'] ) | ||||
|     return xresults | ||||
|  | ||||
|   if x_maxs == 50: | ||||
|     xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2'] | ||||
|   elif x_maxs == 250: | ||||
|     xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS'] | ||||
|   else: raise ValueError('invalid x_maxs={:}'.format(x_maxs)) | ||||
|  | ||||
|   for idx, method in enumerate(xxxstrs): | ||||
|     xkey = method | ||||
|     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] | ||||
|     all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths] | ||||
|     accyss_A = np.array( [get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas] ) | ||||
|     accyss_B = np.array( [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] ) | ||||
|     epochs = list(range(accyss_A.shape[1])) | ||||
|     for j, accyss in enumerate([accyss_A, accyss_B]): | ||||
|       plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx*2+j], linestyle='-' if j==0 else '--', label='{:} ({:})'.format(method, 'VALID' if j == 0 else 'TEST'), lw=2, alpha=0.9) | ||||
|       plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx*2+j]) | ||||
|   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   save_path = vis_save_dir / '{:}-{:}'.format(xox, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   LRs = ['0.01', '0.02', '0.1', '0.2', '0.5', '1.0', '1.5', '2.0', '2.5', '3.0'] | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth'.format(x) for x in LRs] | ||||
|   acc_lr_dict, indexes = {}, None | ||||
|   for lr, checkpoint in zip(LRs, checkpoints): | ||||
|     all_indexes, accuracies = torch.load(checkpoint, map_location='cpu'), [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset, xset, None, False) | ||||
|       accuracies.append( metrics['accuracy'] ) | ||||
|     if indexes is None: indexes = list(range(len(accuracies))) | ||||
|     acc_lr_dict[lr] = np.array( sorted(accuracies) ) | ||||
|     print ('LR={:.3f}, mean={:}, std={:}'.format(float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std())) | ||||
|    | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 22 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
|  | ||||
|   for idx, LR in enumerate(LRs): | ||||
|     legend = 'LR={:.2f}'.format(float(LR)) | ||||
|     color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|     plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|     print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]), np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}-{:}-{:}.pdf'.format(dataset, xset, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   vis_save_dir = Path(args.save_dir) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.api_path) | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   #visualize_rank_over_time(str(meta_file), vis_save_dir / 'over-time') | ||||
|   #write_video(vis_save_dir / 'over-time') | ||||
|   #visualize_info(str(meta_file), 'cifar10' , vis_save_dir) | ||||
|   #visualize_info(str(meta_file), 'cifar100', vis_save_dir) | ||||
|   #visualize_info(str(meta_file), 'ImageNet16-120', vis_save_dir) | ||||
|   #visualize_relative_ranking(vis_save_dir) | ||||
|  | ||||
|   api = API(args.api_path) | ||||
|   show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (75, 95, 5)) | ||||
|   import pdb; pdb.set_trace() | ||||
|  | ||||
|   for x_maxs in [50, 250]: | ||||
|     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|    | ||||
|   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'DARTS-CIFAR010.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ) , vis_save_dir, 'DARTS-CIFAR100.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ) , vis_save_dir, 'DARTS-ImageNet.pdf', (0, 100,10), 50) | ||||
|   #just_show(api) | ||||
|   """ | ||||
|   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1)) | ||||
|   plot_results_nas_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3)) | ||||
|   plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2)) | ||||
|   """ | ||||
		Reference in New Issue
	
	Block a user