102->201 / NAS->autoDL / more configs of TAS / reorganize docs / fix bugs in NAS baselines
This commit is contained in:
		
							
								
								
									
										229
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										229
									
								
								README.md
									
									
									
									
									
								
							| @@ -1,159 +1,92 @@ | ||||
| # Neural Architecture Search (NAS) | ||||
| # Auto Deep Learning (AutoDL) | ||||
|  | ||||
| This project contains the following neural architecture search (NAS) algorithms, implemented in [PyTorch](http://pytorch.org). | ||||
| More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS). | ||||
| --------- | ||||
| [](LICENSE.md) | ||||
|  | ||||
| - NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 | ||||
| - Network Pruning via Transformable Architecture Search, NeurIPS 2019 | ||||
| - One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| - Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 | ||||
| - 10 NAS algorithms for the neural topology in `exps/algos` (see [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md) for more details) | ||||
| - Several typical classification models, e.g., ResNet and DenseNet (see [BASELINE.md](https://github.com/D-X-Y/NAS-Projects/blob/master/BASELINE.md)) | ||||
| Auto Deep Learning by DXY (AutoDL-Projects) is an open source, lightweight, but useful project for researchers. | ||||
| In this project, Xuanyi Dong implemented several neural architecture search (NAS) and hyper-parameter optimization (HPO) algorithms. | ||||
| He hopes to build it as an easy-to-use AutoDL toolkit in future. | ||||
|  | ||||
| ## **Who should consider using AutoDL-Projects** | ||||
|  | ||||
| - Beginner who want to **try different AutoDL algorithms** for study | ||||
| - Engineer who want to **try AutoDL** to investigate whether AutoDL works on your projects | ||||
| - Researchers who want to **easily** implement and experiement **new** AutoDL algorithms. | ||||
|  | ||||
| ## **Why should we use AutoDL-Projects** | ||||
| - Simplest library dependencies: each examlpe is purely relied on PyTorch or Tensorflow (except for some basic libraries in Anaconda) | ||||
| - All algorithms are in the same codebase. If you implement new algorithms, it is easy to fairly compare with many other baselines. | ||||
| - I will actively support this project, because all my furture AutoDL research will be built upon this project. | ||||
|  | ||||
|  | ||||
| ## AutoDL-Projects Capabilities | ||||
|  | ||||
| At the moment, this project provides the following algorithms and scripts to run them. Please see the details in the link provided in the description column. | ||||
|  | ||||
|  | ||||
| <table> | ||||
|  <tbody> | ||||
|     <tr align="center" valign="bottom"> | ||||
|       <th>Type</th> | ||||
|       <th>Algorithms</th> | ||||
|       <th>Description</th> | ||||
|     </tr> | ||||
|     <tr> <!-- (1-st row) --> | ||||
|     <td rowspan="5" align="center" valign="middle" halign="middle"> NAS </td> | ||||
|     <td align="center" valign="middle"> Network Pruning via Transformable Architecture Search </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NIPS-2019-TAS.md">NIPS-2019-TAS.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (2-nd row) --> | ||||
|     <td align="center" valign="middle"> Searching for A Robust Neural Architecture in Four GPU Hours </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (3-rd row) --> | ||||
|     <td align="center" valign="middle"> One-Shot Neural Architecture Search via Self-Evaluated Template Network </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICCV-2019-SETN.py">ICCV-2019-SETN.py</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (4-th row) --> | ||||
|     <td align="center" valign="middle"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (5-th row) --> | ||||
|     <td align="center" valign="middle"> ENAS / DARTS / REA / REINFORCE / BOHB </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (start second block) --> | ||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> | ||||
|     <td align="center" valign="middle"> coming soon </td> | ||||
|     <td align="center" valign="middle"> coming soon </a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (start third block) --> | ||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> | ||||
|     <td align="center" valign="middle"> Deep Learning-based Image Classification </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/BASELINE.md">BASELINE.md</a> </a> </td> | ||||
|     </tr> | ||||
|  </tbody> | ||||
| </table> | ||||
|  | ||||
|  | ||||
| ## History of this repo | ||||
|  | ||||
| At first, this repo is `GDAS`, which is used to reproduce results in Searching for A Robust Neural Architecture in Four GPU Hours. | ||||
| After that, more functions and more NAS algorithms are continuely added in this repo. After it supports more than five algorithms, it is upgraded from `GDAS` to `NAS-Project`. | ||||
| Now, since both HPO and NAS are supported in this repo, it is upgraded from `NAS-Project` to `AutoDL-Projects`. | ||||
|  | ||||
|  | ||||
| ## Requirements and Preparation | ||||
|  | ||||
| Please install `PyTorch>=1.2.0`, `Python>=3.6`, and `opencv`. | ||||
| Please install `Python>=3.6` and `PyTorch>=1.3.0`. (You could also run this project in lower versions of Python and PyTorch, but may have bugs). | ||||
| Some visualization codes may require `opencv`. | ||||
|  | ||||
| CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. | ||||
| Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Driver](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. | ||||
| Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. | ||||
|  | ||||
| ### Usefull tools | ||||
| 1. Compute the number of parameters and FLOPs of a model: | ||||
| ``` | ||||
| from utils import get_model_infos | ||||
| flop, param  = get_model_infos(net, (1,3,32,32)) | ||||
| ``` | ||||
|  | ||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
|  | ||||
| ## [NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
|  | ||||
| We build a new benchmark for neural architecture search, please see more details in [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md). | ||||
|  | ||||
| The benchmark data file (v1.0) is `NAS-Bench-102-v1_0-e61699.pth`, which can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs). | ||||
|  | ||||
| Now you can simply use our API by `pip install nas-bench-102`. | ||||
|  | ||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||
| [](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable) | ||||
|  | ||||
| In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||
| You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html). | ||||
|  | ||||
| <p float="left"> | ||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="680px"/> | ||||
| <img src="https://d-x-y.github.com/resources/videos/NeurIPS-2019-TAS/TAS-arch.gif?raw=true" width="180px"/> | ||||
| </p> | ||||
|  | ||||
|  | ||||
| ### Usage | ||||
|  | ||||
| Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | ||||
| If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. | ||||
|  | ||||
| args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed. | ||||
|  | ||||
| #### Search for the depth configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| #### Search for the width configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| #### Search for both depth and width configuration of ResNet: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56  CIFARX 0.47 -1 | ||||
| ``` | ||||
|  | ||||
| #### Training the searched shape config from TAS | ||||
| If you want to directly train a model with searched configuration of TAS, try these: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10  C010-ResNet32 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1 | ||||
| ``` | ||||
|  | ||||
| ### Model Configuration | ||||
| The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019). | ||||
|  | ||||
|  | ||||
| ## [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||
|  | ||||
| <strong>Highlight</strong>: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||
|  | ||||
|  | ||||
| ### Usage | ||||
|  | ||||
| Please use the following scripts to train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN  256 -1 | ||||
| ``` | ||||
|  | ||||
| The searching codes of SETN on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | ||||
|  | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||
|  | ||||
| We proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). GDAS is baseed on DARTS and improves it with Gumbel-softmax sampling. | ||||
| Experiments on CIFAR-10, CIFAR-100, ImageNet, PTB, and WT2 are reported. | ||||
|  | ||||
|  | ||||
| ### Usage | ||||
|  | ||||
| #### Reproducing the results of our searched architecture in GDAS | ||||
| Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||
| ``` | ||||
|  | ||||
| #### Searching on the NASNet search space | ||||
| Please use the following scripts to use GDAS to search as in the original paper: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| #### Searching on a small search space (NAS-Bench-102) | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| The baseline searching codes are DARTS: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| #### Training the searched architecture | ||||
| To train the searched architecture found by the above scripts, please use the following codes: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| ``` | ||||
| `|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure. | ||||
|  | ||||
|  | ||||
| # Citation | ||||
| ## Citation | ||||
|  | ||||
| If you find that this project helps your research, please consider citing some of the following papers: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench102, | ||||
|   title     = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
| @@ -180,3 +113,11 @@ If you find that this project helps your research, please consider citing some o | ||||
|   year      = {2019} | ||||
| } | ||||
| ``` | ||||
|  | ||||
| ## Related Projects | ||||
|  | ||||
| - [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS) : A curated list of neural architecture search and related resources. | ||||
| - [AutoML Freiburg-Hannover](https://www.automl.org/) : A website maintained by Frank Hutter's team, containing many AutoML resources. | ||||
|  | ||||
| # License | ||||
| The entire codebase is under [MIT license](LICENSE.md) | ||||
|   | ||||
							
								
								
									
										14
									
								
								configs/NeurIPS-2019/ImageNet-ResNet18V1.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								configs/NeurIPS-2019/ImageNet-ResNet18V1.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| { | ||||
|   "dataset"            : ["str"   , "imagenet"], | ||||
|   "arch"               : ["str"   , "resnet"], | ||||
|   "block_name"         : ["str"   , "BasicBlock"], | ||||
|   "layers"             : ["int"   , ["2", "2", "2", "2"]], | ||||
|   "deep_stem"          : ["bool"  , "0"], | ||||
|   "zero_init_residual" : ["bool"  , "1"], | ||||
|   "class_num"          : ["int"   , "1000"], | ||||
|   "search_mode"        : ["str"   , "shape"], | ||||
|   "xchannels"          : ["int"   , ["3", "64", "25", "64", "38", "19", "128", "128", "38", "38", "256", "256", "256", "256", "512", "512", "512", "512"]], | ||||
|   "xblocks"            : ["int"   , ["1", "1", "2", "2"]], | ||||
|   "super_type"         : ["str"   , "infer-shape"], | ||||
|   "estimated_FLOP"     : ["float" , "1120.44032"] | ||||
| } | ||||
							
								
								
									
										14
									
								
								configs/NeurIPS-2019/ImageNet-ResNet50V1.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								configs/NeurIPS-2019/ImageNet-ResNet50V1.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| { | ||||
|   "dataset"            : ["str"   , "imagenet"], | ||||
|   "arch"               : ["str"   , "resnet"], | ||||
|   "block_name"         : ["str"   , "Bottleneck"], | ||||
|   "layers"             : ["int"   , ["3", "4", "6", "3"]], | ||||
|   "deep_stem"          : ["bool"  , "0"], | ||||
|   "zero_init_residual" : ["bool"  , "1"], | ||||
|   "class_num"          : ["int"   , "1000"], | ||||
|   "search_mode"        : ["str"   , "shape"], | ||||
|   "xchannels"          : ["int"   , ["3", "45", "45", "30", "102", "33", "60", "154", "68", "70", "180", "38", "38", "307", "38", "38", "410", "64", "128", "358", "38", "51", "256", "76", "76", "512", "76", "76", "512", "179", "256", "614", "100", "102", "307", "179", "230", "614", "204", "102", "307", "153", "153", "1228", "512", "512", "1434", "512", "512", "1844"]], | ||||
|   "xblocks"            : ["int"   , ["3", "4", "5", "3"]], | ||||
|   "super_type"         : ["str"   , "infer-shape"], | ||||
|   "estimated_FLOP"     : ["float" , "2291.316289"] | ||||
| } | ||||
							
								
								
									
										76
									
								
								docs/CVPR-2019-GDAS.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								docs/CVPR-2019-GDAS.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,76 @@ | ||||
| # [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||
|  | ||||
| Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019. | ||||
| In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). | ||||
| GDAS is baseed on DARTS and improves it with Gumbel-softmax sampling. | ||||
| Concurrently at the submission period, several NAS papers (SNAS and FBNet) also utilized Gumbel-softmax sampling. We are different at how to forward and backward, see more details in our paper and codes. | ||||
| Experiments on CIFAR-10, CIFAR-100, ImageNet, PTB, and WT2 are reported. | ||||
|  | ||||
|  | ||||
| ## Requirements and Preparation | ||||
|  | ||||
| Please install `Python>=3.6` and `PyTorch>=1.2.0`. | ||||
|  | ||||
| CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. | ||||
|  | ||||
| ### Usefull tools | ||||
| 1. Compute the number of parameters and FLOPs of a model: | ||||
| ``` | ||||
| from utils import get_model_infos | ||||
| flop, param  = get_model_infos(net, (1,3,32,32)) | ||||
| ``` | ||||
|  | ||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
|  | ||||
| ## Usage | ||||
|  | ||||
| ### Reproducing the results of our searched architecture in GDAS | ||||
| Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 | ||||
| ``` | ||||
| If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
| ### Searching on the NASNet search space | ||||
| Please use the following scripts to use GDAS to search as in the original paper: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1 | ||||
| ``` | ||||
| If you want to train the searched architecture found by the above scripts, you need to add the config of that architecture (will be printed in log) in [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
| ### Searching on a small search space (NAS-Bench-201) | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| The baseline searching codes are DARTS: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
| **After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| ``` | ||||
| `|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure. | ||||
|  | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that this project helps your research, please consider citing the following paper: | ||||
| ``` | ||||
| @inproceedings{dong2019search, | ||||
|   title     = {Searching for A Robust Neural Architecture in Four GPU Hours}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||||
|   pages     = {1761--1770}, | ||||
|   year      = {2019} | ||||
| } | ||||
| ``` | ||||
							
								
								
									
										50
									
								
								docs/ICCV-2019-SETN.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								docs/ICCV-2019-SETN.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,50 @@ | ||||
| # [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||
|  | ||||
| <strong>Highlight</strong>: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||
|  | ||||
| One-Shot Neural Architecture Search via Self-Evaluated Template Network is accepted by ICCV 2019. | ||||
|  | ||||
|  | ||||
| ## Requirements and Preparation | ||||
|  | ||||
| Please install `Python>=3.6` and `PyTorch>=1.2.0`. | ||||
|  | ||||
| ### Usefull tools | ||||
| 1. Compute the number of parameters and FLOPs of a model: | ||||
| ``` | ||||
| from utils import get_model_infos | ||||
| flop, param  = get_model_infos(net, (1,3,32,32)) | ||||
| ``` | ||||
|  | ||||
| 2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
|  | ||||
| ## Usage | ||||
|  | ||||
| Please use the following scripts to train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN  256 -1 | ||||
| ``` | ||||
|  | ||||
| The searching codes of SETN on a small search space (NAS-Bench-201). | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that this project helps your research, please consider citing the following paper: | ||||
| ``` | ||||
| @inproceedings{dong2019one, | ||||
|   title     = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, | ||||
|   pages     = {3681--3690}, | ||||
|   year      = {2019} | ||||
| } | ||||
| ``` | ||||
| @@ -1,40 +1,40 @@ | ||||
| # [NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
| # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
| 
 | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| Each edge here is associated with an operation selected from a predefined operation set. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
| 
 | ||||
| In this Markdown file, we provide: | ||||
| - [How to Use NAS-Bench-102](#how-to-use-nas-bench-102) | ||||
| - [Instruction to re-generate NAS-Bench-102](#instruction-to-re-generate-nas-bench-102) | ||||
| - [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-102) | ||||
| - [How to Use NAS-Bench-201](#how-to-use-nas-bench-201) | ||||
| - [Instruction to re-generate NAS-Bench-201](#instruction-to-re-generate-nas-bench-201) | ||||
| - [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-201) | ||||
| 
 | ||||
| Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. | ||||
| 
 | ||||
| Simply type `pip install nas-bench-102` to install our api. | ||||
| Simply type `pip install nas-bench-201` to install our api. | ||||
| 
 | ||||
| If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/NAS-Projects/issues) or email me. | ||||
| If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/AutoDL-Projects/issues) or email me. | ||||
| 
 | ||||
| ### Preparation and Download | ||||
| 
 | ||||
| The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w). | ||||
| The benchmark file of NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w). | ||||
| You can move it to anywhere you want and send its path to our API for initialization. | ||||
| - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||
| - v1.0: `NAS-Bench-201-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||
| - v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | ||||
| - v1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi). | ||||
| 
 | ||||
| The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data. | ||||
| The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-201 or similar NAS datasets or training models by yourself, you need these data. | ||||
| 
 | ||||
| ## How to Use NAS-Bench-102 | ||||
| ## How to Use NAS-Bench-201 | ||||
| 
 | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API as API | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('$path_to_meta_nas_bench_file') | ||||
| api = API('NAS-Bench-102-v1_0-e61699.pth') | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) | ||||
| api = API('NAS-Bench-201-v1_0-e61699.pth') | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth')) | ||||
| ``` | ||||
| 
 | ||||
| 2. Show the number of architectures `len(api)` and each architecture `api[i]`: | ||||
| @@ -72,16 +72,16 @@ index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1 | ||||
| api.show(index) | ||||
| ``` | ||||
| 
 | ||||
| 5. For other usages, please see `lib/nas_102_api/api.py` | ||||
| 5. For other usages, please see `lib/nas_201_api/api.py` | ||||
| 
 | ||||
| 
 | ||||
| ### Detailed Instruction | ||||
| 
 | ||||
| In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`. | ||||
| In `nas_201_api`, we define three classes: `NASBench201API`, `ArchResults`, `ResultsCount`. | ||||
| 
 | ||||
| `ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture): | ||||
| ``` | ||||
| from nas_102_api import ResultsCount | ||||
| from nas_201_api import ResultsCount | ||||
| xdata  = torch.load('000157-FULL.pth') | ||||
| odata  = xdata['full']['all_results'][('cifar10-valid', 777)] | ||||
| result = ResultsCount.create_from_state_dict( odata ) | ||||
| @@ -100,7 +100,7 @@ network.load_state_dict(result.get_net_param()) | ||||
| 
 | ||||
| `ArchResults` maintains all information of all trials of an architecture. Please see the following usages: | ||||
| ``` | ||||
| from nas_102_api import ArchResults | ||||
| from nas_201_api import ArchResults | ||||
| xdata   = torch.load('000157-FULL.pth') | ||||
| archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with  12 epochs | ||||
| archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs | ||||
| @@ -112,28 +112,30 @@ print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) # print loss/accuracy/time of a randomly selected trial | ||||
| ``` | ||||
| 
 | ||||
| `NASBench102API` is the topest level api. Please see the following usages: | ||||
| `NASBench201API` is the topest level api. Please see the following usages: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API as API | ||||
| api = API('NAS-Bench-102-v1_0-e61699.pth') # This will load all the information of NAS-Bench-102 except the trained weights | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-102-v1_0-e61699.pth in ~/.torch/. | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('NAS-Bench-201-v1_0-e61699.pth') # This will load all the information of NAS-Bench-201 except the trained weights | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-201-v1_0-e61699.pth in ~/.torch/. | ||||
| api.show(-1)  # show info of all architectures | ||||
| api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-102-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights | ||||
| api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights | ||||
| 
 | ||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||
| ``` | ||||
| 
 | ||||
| 
 | ||||
| ## Instruction to Re-Generate NAS-Bench-102 | ||||
| ## Instruction to Re-Generate NAS-Bench-201 | ||||
| 
 | ||||
| 1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell. | ||||
| There are four steps to build NAS-Bench-201. | ||||
| 
 | ||||
| 1. generate the meta file for NAS-Bench-201 using the following script, where `NAS-BENCH-201` indicates the name and `4` indicates the maximum number of nodes in a cell. | ||||
| ``` | ||||
| bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4 | ||||
| bash scripts-search/NAS-Bench-201/meta-gen.sh NAS-BENCH-201 4 | ||||
| ``` | ||||
| 
 | ||||
| 2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1). | ||||
| 2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-201-4/BENCH-201-N4.opt-full.script`, which is automatically generated by step-1). | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0     0   389 -1 '777 888 999' | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-models.sh 0     0   389 -1 '777 888 999' | ||||
| ``` | ||||
| This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999). | ||||
| 
 | ||||
| @@ -144,54 +146,55 @@ This command will train 390 architectures (id from 0 to 389) using the following | ||||
| | CIFAR-100       | train         | valid / test | | ||||
| | ImageNet-16-120 | train         | valid / test | | ||||
| 
 | ||||
| Note that the above `train`, `valid`, and `test` indicate the proposed splits in our NAS-Bench-102, and they might be different with the original splits. | ||||
| Note that the above `train`, `valid`, and `test` indicate the proposed splits in our NAS-Bench-201, and they might be different with the original splits. | ||||
| 
 | ||||
| 3. calculate the latency, merge the results of all architectures, and simplify the results. | ||||
| (see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1). | ||||
| (see commands in `output/NAS-BENCH-201-4/meta-node-4.cal-script.txt` which is automatically generated by step-1). | ||||
| ``` | ||||
| OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5 | ||||
| OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-201/statistics.py --mode cal --target_dir 000000-000389-C16-N5 | ||||
| ``` | ||||
| 
 | ||||
| 4. merge all results into a single file for NAS-Bench-102-API. | ||||
| 4. merge all results into a single file for NAS-Bench-201-API. | ||||
| ``` | ||||
| OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge | ||||
| OMP_NUM_THREADS=4 python exps/NAS-Bench-201/statistics.py --mode merge | ||||
| ``` | ||||
| This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102. | ||||
| This generated file will serve as the input for our NAS-Bench-102 API. | ||||
| This command will generate a single file `output/NAS-BENCH-201-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-201. | ||||
| This generated file will serve as the input for our NAS-Bench-201 API. | ||||
| 
 | ||||
| [option] train a single architecture on a single GPU. | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh resnet 16 5 | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5 | ||||
| ``` | ||||
| 
 | ||||
| 
 | ||||
| ## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102 | ||||
| ## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-201 | ||||
| 
 | ||||
| We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102. | ||||
| We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-201. | ||||
| If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly. | ||||
| 
 | ||||
| **Note that** you need to prepare the training and test data as described in [Preparation and Download](#preparation-and-download) | ||||
| 
 | ||||
| - [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`, where `cifar10` can be replaced with `cifar100` or `ImageNet16-120`. | ||||
| - [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1` | ||||
| - [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 -1` | ||||
| - [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh     cifar10 -1` | ||||
| - [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh     cifar10 -1` | ||||
| - [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1` | ||||
| - [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 1 -1`, where `cifar10` can be replaced with `cifar100` or `ImageNet16-120`. | ||||
| - [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1` | ||||
| - [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh     cifar10 1 -1` | ||||
| - [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh     cifar10 1 -1` | ||||
| - [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh     cifar10 1 -1` | ||||
| - [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 1 -1` | ||||
| - [7] `bash ./scripts-search/algos/R-EA.sh -1` | ||||
| - [8] `bash ./scripts-search/algos/Random.sh -1` | ||||
| - [9] `bash ./scripts-search/algos/REINFORCE.sh -1` | ||||
| - [9] `bash ./scripts-search/algos/REINFORCE.sh 0.5 -1` | ||||
| - [10] `bash ./scripts-search/algos/BOHB.sh -1` | ||||
| 
 | ||||
| In commands [1-6], the first args `cifar10` indicates the dataset name, the second args `1` indicates the behavior of BN, and the first args `-1` indicates the random seed. | ||||
| 
 | ||||
| 
 | ||||
| # Citation | ||||
| 
 | ||||
| If you find that NAS-Bench-102 helps your research, please consider citing it: | ||||
| If you find that NAS-Bench-201 helps your research, please consider citing it: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench102, | ||||
|   title     = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
							
								
								
									
										71
									
								
								docs/NIPS-2019-TAS.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								docs/NIPS-2019-TAS.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| # [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||
|  | ||||
| [](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable) | ||||
|  | ||||
| Network Pruning via Transformable Architecture Search is accepted by NeurIPS 2019. | ||||
| In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||
| You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html). | ||||
|  | ||||
| <p float="left"> | ||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="680px"/> | ||||
| <img src="https://d-x-y.github.com/resources/videos/NeurIPS-2019-TAS/TAS-arch.gif?raw=true" width="180px"/> | ||||
| </p> | ||||
|  | ||||
|  | ||||
| ## Requirements and Preparation | ||||
|  | ||||
| Please install `Python>=3.6` and `PyTorch>=1.2.0`. | ||||
|  | ||||
| CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. | ||||
| The proposed method utilized knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. | ||||
|  | ||||
| **LOGS**: | ||||
| We provide some logs at [Google Drive](https://drive.google.com/open?id=1_qUY4DTtuW_l6ZonynQAC9ttqy35fxZ-). It includes (1) logs of training searched shape of ResNet-18 and ResNet-50 on ImageNet, (2) logs of searching and training for ResNet-164 on CIFAR, (3) logs of searching and training for ResNet56 on CIFAR-10, (4) logs of searching and training for ResNet110 on CIFAR-100. | ||||
|  | ||||
| ## Usage | ||||
|  | ||||
| Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | ||||
| If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. | ||||
|  | ||||
| args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed. | ||||
|  | ||||
| **Model Configuration** | ||||
|  | ||||
| The searched shapes for ResNet-20/32/56/110/164 and ResNet-18/50 in Table 3/4 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/AutoDL-Projects/tree/master/configs/NeurIPS-2019). | ||||
|  | ||||
| **Search for the depth configuration of ResNet** | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| **Search for the width configuration of ResNet** | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1 | ||||
| ``` | ||||
|  | ||||
| **Search for both depth and width configuration of ResNet** | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56  CIFARX 0.47 -1 | ||||
| ``` | ||||
|  | ||||
| **Training the searched shape config from TAS:** | ||||
| If you want to directly train a model with searched configuration of TAS, try these: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10  C010-ResNet32 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet18V1 -1 | ||||
| CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet50V1 -1 | ||||
| ``` | ||||
|  | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that this project helps your research, please consider citing the following paper: | ||||
| ``` | ||||
| @inproceedings{dong2019tas, | ||||
|   title     = {Network Pruning via Transformable Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {Neural Information Processing Systems (NeurIPS)}, | ||||
|   year      = {2019} | ||||
| } | ||||
| ``` | ||||
| @@ -48,7 +48,7 @@ def main(xargs): | ||||
|   # Create an instance of the model | ||||
|   config = dict2config({'name': 'GDAS', | ||||
|                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||
|                         'num_classes': 10, 'space': 'nas-bench-102', 'affine': True}, None) | ||||
|                         'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) | ||||
|   model = get_cell_based_tiny_net(config) | ||||
|   #import pdb; pdb.set_trace() | ||||
|   #model.build(((64, 32, 32, 3), (1,))) | ||||
| @@ -126,7 +126,7 @@ def main(xargs): | ||||
|     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   # training details | ||||
|   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||
|   parser.add_argument('--tau_max'           , type=float,   default= 10   ,   help='') | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # python exps/NAS-Bench-102/check.py --base_save_dir  | ||||
| # python exps/NAS-Bench-201/check.py --base_save_dir  | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from shutil import copyfile | ||||
| @@ -67,8 +67,8 @@ def check_files(save_dir, meta_file, basestr): | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|   parser = argparse.ArgumentParser(description='NAS Benchmark 102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-102-4',     help='The base-name of folder to save checkpoints and log.') | ||||
|   parser = argparse.ArgumentParser(description='NAS Benchmark 201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',     help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',       type=int, default=4,                                 help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel',        type=int, default=16,                                help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',      type=int, default=5,                                 help='The number of cells in one stage.') | ||||
| @@ -78,7 +78,7 @@ if __name__ == '__main__': | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('check NAS-Bench-102 in {:}'.format(save_dir)) | ||||
|   print ('check NAS-Bench-201 in {:}'.format(save_dir)) | ||||
| 
 | ||||
|   basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|   check_files(save_dir, meta_path, basestr) | ||||
| @@ -8,15 +8,15 @@ def read(fname='README.md'): | ||||
| 
 | ||||
| 
 | ||||
| setup( | ||||
|     name = "nas_bench_102", | ||||
|     name = "nas_bench_201", | ||||
|     version = "1.0", | ||||
|     author = "Xuanyi Dong", | ||||
|     author_email = "dongxuanyi888@gmail.com", | ||||
|     description = "API for NAS-Bench-102 (a benchmark for neural architecture search).", | ||||
|     description = "API for NAS-Bench-201 (a benchmark for neural architecture search).", | ||||
|     license = "MIT", | ||||
|     keywords = "NAS Dataset API DeepLearning", | ||||
|     url = "https://github.com/D-X-Y/NAS-Projects", | ||||
|     packages=['nas_102_api'], | ||||
|     url = "https://github.com/D-X-Y/NAS-Bench-201", | ||||
|     packages=['nas_201_api'], | ||||
|     long_description=read('README.md'), | ||||
|     long_description_content_type='text/markdown', | ||||
|     classifiers=[ | ||||
| @@ -1,5 +1,5 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-102, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019-2020         # | ||||
| ############################################################### | ||||
| @@ -213,7 +213,7 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se | ||||
| 
 | ||||
| 
 | ||||
| def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-102') | ||||
|   aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') | ||||
|   archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) | ||||
|   print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) | ||||
| 
 | ||||
| @@ -249,15 +249,15 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   torch.save(info, save_name) | ||||
|   print ('save the meta file into {:}'.format(save_name)) | ||||
| 
 | ||||
|   script_name_full = save_dir / 'BENCH-102-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-102-N{:}.opt-less.script'.format(max_node) | ||||
|   script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) | ||||
|   script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) | ||||
|   full_file = open(str(script_name_full), 'w') | ||||
|   less_file = open(str(script_name_less), 'w') | ||||
|   gaps = total_arch // divide | ||||
|   for start in range(0, total_arch, gaps): | ||||
|     xend = min(start+gaps, total_arch) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-102/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-102/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|     less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) | ||||
|   print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) | ||||
|   full_file.close() | ||||
|   less_file.close() | ||||
| @@ -267,14 +267,14 @@ def generate_meta_info(save_dir, max_node, divide=40): | ||||
|   with open(str(script_name), 'w') as cfile: | ||||
|     for start in range(0, total_arch, gaps): | ||||
|       xend = min(start+gaps, total_arch) | ||||
|       cfile.write('{:} python exps/NAS-Bench-102/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|       cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) | ||||
|   print ('save the post-processing script into {:}'.format(script_name)) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|   #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] | ||||
|   #parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'   ,     type=str,   required=True,  help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,                   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',    type=int,                   help='The maximum node in a cell.') | ||||
| @@ -12,9 +12,9 @@ if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from config_utils import load_config, dict2config | ||||
| from datasets     import get_datasets | ||||
| # NAS-Bench-102 related module or function | ||||
| # NAS-Bench-201 related module or function | ||||
| from models       import CellStructure, get_cell_based_tiny_net | ||||
| from nas_102_api  import ArchResults, ResultsCount | ||||
| from nas_201_api  import ArchResults, ResultsCount | ||||
| from functions    import pure_evaluate | ||||
| 
 | ||||
| 
 | ||||
| @@ -271,9 +271,9 @@ def merge_all(save_dir, meta_file, basestr): | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode'         ,  type=str, choices=['cal', 'merge'],            help='The running mode for this script.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-102-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-201-4',  help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--target_dir'   ,  type=str,                                      help='The target directory.') | ||||
|   parser.add_argument('--max_node'     ,  type=int, default=4,                           help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel'      ,  type=int, default=16,                          help='The number of channels.') | ||||
| @@ -1,7 +1,7 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # python exps/NAS-Bench-102/test-correlation.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth | ||||
| # python exps/NAS-Bench-201/test-correlation.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ######################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| @@ -18,7 +18,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces, CellStructure | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| 
 | ||||
|    | ||||
| def valid_func(xloader, network, criterion): | ||||
| @@ -197,9 +197,9 @@ def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand): | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-102") | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-102 benchmark file.') | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
| 
 | ||||
|   vis_save_dir = Path(args.save_dir) | ||||
| @@ -1,7 +1,7 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # python exps/NAS-Bench-102/visualize.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth | ||||
| # python exps/NAS-Bench-201/visualize.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from tqdm import tqdm | ||||
| @@ -19,7 +19,7 @@ import matplotlib.pyplot as plt | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import time_string | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| @@ -367,13 +367,66 @@ def write_video(save_dir): | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_lims): | ||||
|   #print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   print ('root-path : {:} and {:}'.format(dataset_xset_a, dataset_xset_b)) | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/RAND-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth' | ||||
|                 ] | ||||
|   legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None | ||||
|   All_Accs_A, All_Accs_B = OrderedDict(), OrderedDict() | ||||
|   for legend, checkpoint in zip(legends, checkpoints): | ||||
|     all_indexes = torch.load(checkpoint, map_location='cpu') | ||||
|     accuracies_A, accuracies_B = [], [] | ||||
|     accuracies = [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset_xset_a[0], dataset_xset_a[1], None, False) | ||||
|       accuracies_A.append( metrics['accuracy'] ) | ||||
|       metrics = info.get_metrics(dataset_xset_b[0], dataset_xset_b[1], None, False) | ||||
|       accuracies_B.append( metrics['accuracy'] ) | ||||
|       accuracies.append( (accuracies_A[-1], accuracies_B[-1]) ) | ||||
|     if indexes is None: indexes = list(range(len(all_indexes))) | ||||
|     accuracies = sorted(accuracies) | ||||
|     All_Accs_A[legend] = [x[0] for x in accuracies] | ||||
|     All_Accs_B[legend] = [x[1] for x in accuracies] | ||||
| 
 | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
| 
 | ||||
|   for idx, legend in enumerate(legends): | ||||
|     plt.plot(indexes, All_Accs_B[legend], color=color_set[idx], linestyle='--', label='{:}'.format(legend), lw=1, alpha=0.5) | ||||
|     plt.plot(indexes, All_Accs_A[legend], color=color_set[idx], linestyle='-', lw=1) | ||||
|     for All_Accs in [All_Accs_A, All_Accs_B]: | ||||
|       print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(All_Accs[legend]), np.std(All_Accs[legend]), np.mean(All_Accs[legend]), np.std(All_Accs[legend]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}'.format(file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def plot_results_nas(api, dataset, xset, root, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   checkpoints = ['./output/search-cell-nas-bench-102/R-EA-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-102/REINFORCE-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-102/RAND-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-102/BOHB-cifar10/results.pth' | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/RAND-cifar10/results.pth', | ||||
|                  './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth' | ||||
|                 ] | ||||
|   legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None | ||||
|   All_Accs = OrderedDict() | ||||
| @@ -422,19 +475,19 @@ def just_show(api): | ||||
|     xlist = np.array(xlist) | ||||
|     print ('{:4s} : mean-time={:.2f} s'.format(xkey, xlist.mean())) | ||||
| 
 | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-102/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-102/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-102/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-102/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-102/ENAS-cifar10/checkpoint/', | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [30801, 75610, 97745], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
| 
 | ||||
|   def get_accs(xdata, index=-1): | ||||
| @@ -480,23 +533,26 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_ | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
| 
 | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-102/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-102/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-102/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-102/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-102/ENAS-cifar10/checkpoint/', | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [30801, 75610, 97745], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
| 
 | ||||
|   def get_accs(xdata): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
|     if -1 in xdata['genotypes']: | ||||
|       metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False) | ||||
|     else: | ||||
|       metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False) | ||||
|     xresults.append( metrics['accuracy'] ) | ||||
|     for iepoch in range(epochs): | ||||
| @@ -528,12 +584,120 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_ | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
| 
 | ||||
| 
 | ||||
| def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, y_lims, x_maxs): | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 28 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   #x_maxs = 250 | ||||
|   plt.xlim(0, x_maxs+1) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = x_maxs // 5, y_lims[2] | ||||
|   plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The searching epoch', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
| 
 | ||||
|   xpaths = {'RSPS'    : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/', | ||||
|             'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/', | ||||
|             'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/', | ||||
|             'GDAS'    : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/', | ||||
|             'SETN'    : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/', | ||||
|             'ENAS'    : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/', | ||||
|            } | ||||
|   xseeds = {'RSPS'    : [5349, 59613, 5983], | ||||
|             'DARTS-V1': [11416, 72873, 81184, 28640], | ||||
|             'DARTS-V2': [43330, 79405, 79423], | ||||
|             'GDAS'    : [19677, 884, 95950], | ||||
|             'SETN'    : [20518, 61817, 89144], | ||||
|             'ENAS'    : [3231, 34238, 96929], | ||||
|            } | ||||
| 
 | ||||
|   def get_accs(xdata, dataset, subset): | ||||
|     epochs, xresults = xdata['epoch'], [] | ||||
|     if -1 in xdata['genotypes']: | ||||
|       metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False) | ||||
|     else: | ||||
|       metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False) | ||||
|     xresults.append( metrics['accuracy'] ) | ||||
|     for iepoch in range(epochs): | ||||
|       genotype = xdata['genotypes'][iepoch] | ||||
|       index = api.query_index_by_arch(genotype) | ||||
|       metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False) | ||||
|       xresults.append( metrics['accuracy'] ) | ||||
|     return xresults | ||||
| 
 | ||||
|   if x_maxs == 50: | ||||
|     xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2'] | ||||
|   elif x_maxs == 250: | ||||
|     xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS'] | ||||
|   else: raise ValueError('invalid x_maxs={:}'.format(x_maxs)) | ||||
| 
 | ||||
|   for idx, method in enumerate(xxxstrs): | ||||
|     xkey = method | ||||
|     all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ] | ||||
|     all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths] | ||||
|     accyss_A = np.array( [get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas] ) | ||||
|     accyss_B = np.array( [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] ) | ||||
|     epochs = list(range(accyss_A.shape[1])) | ||||
|     for j, accyss in enumerate([accyss_A, accyss_B]): | ||||
|       plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx*2+j], linestyle='-' if j==0 else '--', label='{:} ({:})'.format(method, 'VALID' if j == 0 else 'TEST'), lw=2, alpha=0.9) | ||||
|       plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx*2+j]) | ||||
|   #plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   save_path = vis_save_dir / '{:}-{:}'.format(xox, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
| 
 | ||||
| 
 | ||||
| def show_reinforce(api, root, dataset, xset, file_name, y_lims): | ||||
|   print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset)) | ||||
|   LRs = ['0.01', '0.02', '0.1', '0.2', '0.5', '1.0', '1.5', '2.0', '2.5', '3.0'] | ||||
|   checkpoints = ['./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth'.format(x) for x in LRs] | ||||
|   acc_lr_dict, indexes = {}, None | ||||
|   for lr, checkpoint in zip(LRs, checkpoints): | ||||
|     all_indexes, accuracies = torch.load(checkpoint, map_location='cpu'), [] | ||||
|     for x in all_indexes: | ||||
|       info = api.arch2infos_full[ x ] | ||||
|       metrics = info.get_metrics(dataset, xset, None, False) | ||||
|       accuracies.append( metrics['accuracy'] ) | ||||
|     if indexes is None: indexes = list(range(len(accuracies))) | ||||
|     acc_lr_dict[lr] = np.array( sorted(accuracies) ) | ||||
|     print ('LR={:.3f}, mean={:}, std={:}'.format(float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std())) | ||||
|    | ||||
|   color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k'] | ||||
|   dpi, width, height = 300, 3400, 2600 | ||||
|   LabelSize, LegendFontsize = 28, 22 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   x_axis = np.arange(0, 600) | ||||
|   plt.xlim(0, max(indexes)) | ||||
|   plt.ylim(y_lims[0], y_lims[1]) | ||||
|   interval_x, interval_y = 100, y_lims[2] | ||||
|   plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize) | ||||
|   plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize) | ||||
|   plt.grid() | ||||
|   plt.xlabel('The index of runs', fontsize=LabelSize) | ||||
|   plt.ylabel('The accuracy (%)', fontsize=LabelSize) | ||||
| 
 | ||||
|   for idx, LR in enumerate(LRs): | ||||
|     legend = 'LR={:.2f}'.format(float(LR)) | ||||
|     color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.' | ||||
|     plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8) | ||||
|     print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]), np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]))) | ||||
|   plt.legend(loc=4, fontsize=LegendFontsize) | ||||
|   save_path = root / '{:}-{:}-{:}.pdf'.format(dataset, xset, file_name) | ||||
|   print('save figure into {:}\n'.format(save_path)) | ||||
|   fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf') | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-102 benchmark file.') | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',  type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   vis_save_dir = Path(args.save_dir) | ||||
| @@ -548,6 +712,9 @@ if __name__ == '__main__': | ||||
|   #visualize_relative_ranking(vis_save_dir) | ||||
| 
 | ||||
|   api = API(args.api_path) | ||||
|   show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (75, 95, 5)) | ||||
|   import pdb; pdb.set_trace() | ||||
| 
 | ||||
|   for x_maxs in [50, 250]: | ||||
|     show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
| @@ -555,12 +722,19 @@ if __name__ == '__main__': | ||||
|     show_nas_sharing_w(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|     show_nas_sharing_w(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs) | ||||
|    | ||||
|   show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test') , vis_save_dir, 'DARTS-CIFAR010.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ) , vis_save_dir, 'DARTS-CIFAR100.pdf', (0, 100,10), 50) | ||||
|   show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ) , vis_save_dir, 'DARTS-ImageNet.pdf', (0, 100,10), 50) | ||||
|   #just_show(api) | ||||
|   """ | ||||
|   just_show(api) | ||||
|   plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar10'       , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'cifar100'      , 'x-test'  , vis_save_dir, 'nas-com.pdf', (55,75, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas(api, 'ImageNet16-120', 'x-test'  , vis_save_dir, 'nas-com.pdf', (35,50, 3)) | ||||
|   plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10'       , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1)) | ||||
|   plot_results_nas_v2(api, ('cifar100'      , 'x-valid'), ('cifar100'      , 'x-test'  ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3)) | ||||
|   plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test'  ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2)) | ||||
|   """ | ||||
| @@ -1,9 +1,10 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # required to install hpbandster ################# | ||||
| # bash ./scripts-search/algos/BOHB.sh -1         # | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################################### | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale # | ||||
| # required to install hpbandster ################################## | ||||
| # bash ./scripts-search/algos/BOHB.sh -1         ################## | ||||
| ################################################################### | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| @@ -17,7 +18,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | ||||
| import ConfigSpace | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| @@ -17,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| @@ -17,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def _concat(xs): | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| @@ -15,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger): | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| @@ -17,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 # | ||||
| ############################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| @@ -15,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, epoch_str, print_freq, logger): | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ############################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| @@ -15,7 +15,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from R_EA         import train_and_eval, random_architecture_func | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################################## | ||||
| # Regularized Evolution for Image Classifier Architecture Search # | ||||
| ################################################################## | ||||
| @@ -16,7 +16,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
|  | ||||
|  | ||||
| @@ -31,30 +31,8 @@ class Model(object): | ||||
|     return '{:}'.format(self.arch) | ||||
|    | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||
| def train_and_eval(arch, nas_bench, extra_info): | ||||
|   if nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| @@ -17,7 +17,7 @@ from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_che | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_cell_based_tiny_net, get_search_spaces | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger): | ||||
|   | ||||
| @@ -17,7 +17,7 @@ from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
|  | ||||
| @@ -128,6 +128,7 @@ def main(xargs, nas_bench): | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   policy    = Policy(xargs.max_nodes, search_space) | ||||
|   optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) | ||||
|   #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate) | ||||
|   eps       = np.finfo(np.float32).eps.item() | ||||
|   baseline  = ExponentialMovingAverage(xargs.EMA_momentum) | ||||
|   logger.log('policy    : {:}'.format(policy)) | ||||
| @@ -141,13 +142,14 @@ def main(xargs, nas_bench): | ||||
|   # attempts = 0 | ||||
|   x_start_time = time.time() | ||||
|   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) | ||||
|   total_steps, total_costs = 0, 0 | ||||
|   total_steps, total_costs, trace = 0, 0, [] | ||||
|   #for istep in range(xargs.RL_steps): | ||||
|   while total_costs < xargs.time_budget: | ||||
|     start_time = time.time() | ||||
|     log_prob, action = select_action( policy ) | ||||
|     arch   = policy.generate_arch( action ) | ||||
|     reward, cost_time = train_and_eval(arch, nas_bench, extra_info) | ||||
|     trace.append( (reward, arch) ) | ||||
|     # accumulate time | ||||
|     if total_costs + cost_time < xargs.time_budget: | ||||
|       total_costs += cost_time | ||||
| @@ -166,7 +168,8 @@ def main(xargs, nas_bench): | ||||
|     #logger.log('----> {:}'.format(policy.arch_parameters)) | ||||
|     #logger.log('') | ||||
|  | ||||
|   best_arch = policy.genotype() | ||||
|   # best_arch = policy.genotype() # first version | ||||
|   best_arch = max(trace, key=lambda x: x[0])[1] | ||||
|   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs, time.time()-x_start_time)) | ||||
|   info = nas_bench.query_by_arch( best_arch ) | ||||
|   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|   | ||||
| @@ -8,11 +8,11 @@ from collections import OrderedDict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from nas_102_api import NASBench102API as API | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
| def test_nas_api(): | ||||
|   from nas_102_api import ArchResults | ||||
|   xdata   = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth') | ||||
|   from nas_201_api import ArchResults | ||||
|   xdata   = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth') | ||||
|   for key in ['full', 'less']: | ||||
|     print ('\n------------------------- {:} -------------------------'.format(key)) | ||||
|     archRes = ArchResults.create_from_state_dict(xdata[key]) | ||||
| @@ -81,8 +81,8 @@ def test_one_shot_model(ckpath, use_train): | ||||
|   from config_utils import load_config, dict2config | ||||
|   from utils.nas_utils import evaluate_one_shot | ||||
|   use_train = int(use_train) > 0 | ||||
|   #ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth' | ||||
|   #ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth' | ||||
|   #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth' | ||||
|   #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth' | ||||
|   print ('ckpath : {:}'.format(ckpath)) | ||||
|   ckp = torch.load(ckpath) | ||||
|   xargs = ckp['args'] | ||||
| @@ -103,7 +103,7 @@ def test_one_shot_model(ckpath, use_train): | ||||
|   search_model = get_cell_based_tiny_net(model_config) | ||||
|   search_model.load_state_dict( ckp['search_model'] ) | ||||
|   search_model = search_model.cuda() | ||||
|   api = API('/home/dxy/.torch/NAS-Bench-102-v1_0-e61699.pth') | ||||
|   api = API('/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth') | ||||
|   archs, probs, accuracies = evaluate_one_shot(search_model, valid_loader, api, use_train) | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################## | ||||
| import os, sys, time, random, argparse | ||||
| from .share_args import add_shared_args | ||||
|   | ||||
| @@ -19,7 +19,7 @@ def get_cell_based_tiny_net(config): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM'] | ||||
|   if super_type == 'basic' and config.name in group_names: | ||||
|     from .cell_searchs import nas102_super_nets as nas_super_nets | ||||
|     from .cell_searchs import nas201_super_nets as nas_super_nets | ||||
|     try: | ||||
|       return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) | ||||
|     except: | ||||
|   | ||||
| @@ -1,8 +1,13 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################## | ||||
|  | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # Cell for NAS-Bench-201 | ||||
| class InferCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_in, C_out, stride): | ||||
|   | ||||
| @@ -1,9 +1,13 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .cells import InferCell | ||||
|  | ||||
|  | ||||
| # The macro structure for architectures in NAS-Bench-201 | ||||
| class TinyNetwork(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, genotype, num_classes): | ||||
|   | ||||
| @@ -21,12 +21,11 @@ OPS = { | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] | ||||
| NAS_BENCH_102         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
| NAS_BENCH_201         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
| DARTS_SPACE           = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3'] | ||||
|  | ||||
| SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | ||||
|                     'aa-nas'       : NAS_BENCH_102, | ||||
|                     'nas-bench-102': NAS_BENCH_102, | ||||
|                     'nas-bench-201': NAS_BENCH_201, | ||||
|                     'darts'        : DARTS_SPACE} | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-102 | ||||
| # The macro structure is defined in NAS-Bench-201 | ||||
| from .search_model_darts    import TinyNetworkDarts | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| @@ -12,7 +12,7 @@ from .genotypes             import Structure as CellStructure, architectures as | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
|  | ||||
|  | ||||
| nas102_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
| nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                   'DARTS-V2': TinyNetworkDarts, | ||||
|                   'GDAS'    : TinyNetworkGDAS, | ||||
|                   'SETN'    : TinyNetworkSETN, | ||||
|   | ||||
| @@ -9,11 +9,11 @@ from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| # This module is used for NAS-Bench-102, represents a small search space with a complete DAG | ||||
| class NAS102SearchCell(nn.Module): | ||||
| # This module is used for NAS-Bench-201, represents a small search space with a complete DAG | ||||
| class NAS201SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): | ||||
|     super(NAS102SearchCell, self).__init__() | ||||
|     super(NAS201SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.edges     = nn.ModuleDict() | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|   | ||||
| @@ -5,7 +5,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -7,7 +7,7 @@ import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS102SearchCell as SearchCell | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .api import NASBench102API | ||||
| from .api import NASBench201API | ||||
| from .api import ArchResults, ResultsCount | ||||
| 
 | ||||
| NAS_BENCH_102_API_VERSION="v1.0" | ||||
| NAS_BENCH_201_API_VERSION="v1.0" | ||||
| @@ -1,9 +1,9 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # | ||||
| # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # | ||||
| ############################################################################################ | ||||
| # NAS-Bench-102-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID. | ||||
| # NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID. | ||||
| # | ||||
| # | ||||
| # | ||||
| @@ -38,11 +38,11 @@ def print_information(information, extra_info=None, show=False): | ||||
|   return strings | ||||
| 
 | ||||
| 
 | ||||
| class NASBench102API(object): | ||||
| class NASBench201API(object): | ||||
| 
 | ||||
|   def __init__(self, file_path_or_dict, verbose=True): | ||||
|     if isinstance(file_path_or_dict, str): | ||||
|       if verbose: print('try to create the NAS-Bench-102 api from {:}'.format(file_path_or_dict)) | ||||
|       if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) | ||||
|       assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) | ||||
|       file_path_or_dict = torch.load(file_path_or_dict) | ||||
|     elif isinstance(file_path_or_dict, dict): | ||||
| @@ -2,3 +2,4 @@ | ||||
| from .CifarNet  import NetworkCIFAR as CifarNet | ||||
| from .ImageNet  import NetworkImageNet as ImageNet | ||||
| from .genotypes import Networks | ||||
| from .genotypes import build_genotype_from_dict | ||||
|   | ||||
| @@ -167,3 +167,6 @@ Networks = {'DARTS_V1': DARTS_V1, | ||||
|             'PNASNet' : PNASNet, | ||||
|             'SETN'    : SETN, | ||||
|            } | ||||
|  | ||||
| def build_genotype_from_dict(xdict): | ||||
|   import pdb; pdb.set_trace() | ||||
|   | ||||
| @@ -1,6 +1,11 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################## | ||||
| # I write this package to make AutoDL-Projects to be compatible with the old GDAS projects. | ||||
| # Ideally, this package will be merged into lib/models/cell_infers in future. | ||||
| # Currently, this package is used to reproduce the results in GDAS (Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019). | ||||
| ################################################## | ||||
|  | ||||
| import torch | ||||
|  | ||||
| def obtain_nas_infer_model(config): | ||||
|   | ||||
| @@ -14,10 +14,10 @@ OPS = { | ||||
|   'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) | ||||
| } | ||||
|  | ||||
| NAS_BENCH_102         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
| NAS_BENCH_201         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
|  | ||||
| SearchSpaceNames = { | ||||
|                     'nas-bench-102': NAS_BENCH_102, | ||||
|                     'nas-bench-201': NAS_BENCH_201, | ||||
|                    } | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1,5 +1,5 @@ | ||||
| #!/bin/bash | ||||
| # bash scripts-search/NAS-Bench-102/build.sh | ||||
| # bash scripts-search/NAS-Bench-201/build.sh | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 0 ] ;then | ||||
| @@ -8,17 +8,17 @@ if [ "$#" -ne 0 ] ;then | ||||
|   exit 1 | ||||
| fi | ||||
| 
 | ||||
| save_dir=./output/nas_bench_102_package | ||||
| save_dir=./output/nas_bench_201_package | ||||
| echo "Prepare to build the package in ${save_dir}" | ||||
| rm -rf ${save_dir} | ||||
| mkdir -p ${save_dir} | ||||
| 
 | ||||
| #cp NAS-Bench-102.md ${save_dir}/README.md | ||||
| sed '125,187d' NAS-Bench-102.md > ${save_dir}/README.md | ||||
| #cp NAS-Bench-201.md ${save_dir}/README.md | ||||
| sed '125,187d' NAS-Bench-201.md > ${save_dir}/README.md | ||||
| cp LICENSE.md ${save_dir}/LICENSE.md | ||||
| cp -r lib/nas_102_api ${save_dir}/ | ||||
| rm -rf ${save_dir}/nas_102_api/__pycache__ | ||||
| cp exps/NAS-Bench-102/dist-setup.py ${save_dir}/setup.py | ||||
| cp -r lib/nas_201_api ${save_dir}/ | ||||
| rm -rf ${save_dir}/nas_201_api/__pycache__ | ||||
| cp exps/NAS-Bench-201/dist-setup.py ${save_dir}/setup.py | ||||
| 
 | ||||
| cd ${save_dir} | ||||
| # python setup.py sdist bdist_wheel | ||||
| @@ -1,5 +1,5 @@ | ||||
| #!/bin/bash | ||||
| # bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4 | ||||
| # bash scripts-search/NAS-Bench-201/meta-gen.sh NAS-BENCH-201 4 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| @@ -13,4 +13,4 @@ node=$2 | ||||
| 
 | ||||
| save_dir=./output/${name}-${node} | ||||
| 
 | ||||
| python ./exps/NAS-Bench-102/main.py --mode meta --save_dir ${save_dir} --max_node ${node} | ||||
| python ./exps/NAS-Bench-201/main.py --mode meta --save_dir ${save_dir} --max_node ${node} | ||||
| @@ -1,5 +1,5 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5 | ||||
| # bash ./scripts-search/NAS-Bench-201/train-a-net.sh resnet 16 5 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
| @@ -18,9 +18,9 @@ model=$1 | ||||
| channel=$2 | ||||
| num_cells=$3 | ||||
| 
 | ||||
| save_dir=./output/NAS-BENCH-102-4/ | ||||
| save_dir=./output/NAS-BENCH-201-4/ | ||||
| 
 | ||||
| OMP_NUM_THREADS=4 python ./exps/NAS-Bench-102/main.py \ | ||||
| OMP_NUM_THREADS=4 python ./exps/NAS-Bench-201/main.py \ | ||||
| 	--mode specific-${model} --save_dir ${save_dir} --max_node 4 \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--use_less 0 \ | ||||
| @@ -20,7 +20,7 @@ xend=$3 | ||||
| arch_index=$4 | ||||
| all_seeds=$5 | ||||
| 
 | ||||
| save_dir=./output/NAS-BENCH-102-4/ | ||||
| save_dir=./output/NAS-BENCH-201-4/ | ||||
| 
 | ||||
| if [ ${arch_index} == "-1" ]; then | ||||
|   mode=new | ||||
| @@ -28,7 +28,7 @@ else | ||||
|   mode=cover | ||||
| fi | ||||
| 
 | ||||
| OMP_NUM_THREADS=4 python ./exps/NAS-Bench-102/main.py \ | ||||
| OMP_NUM_THREADS=4 python ./exps/NAS-Bench-201/main.py \ | ||||
| 	--mode ${mode} --save_dir ${save_dir} --max_node 4 \ | ||||
| 	--use_less ${use_less} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| @@ -19,7 +19,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/BOHB-${dataset} | ||||
|  | ||||
| @@ -27,7 +27,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000  \ | ||||
| 	--n_iters 50 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -1,10 +1,10 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1 | ||||
| # bash ./scripts-search/algos/DARTS-V1.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, tracking_status, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,11 +15,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,14 +28,14 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/DARTS-V1-${dataset} | ||||
| save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--config_path configs/nas-benchmark/algos/DARTS.config \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--track_running_stats 1 \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -1,10 +1,10 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1 | ||||
| # bash ./scripts-search/algos/DARTS-V2.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, tracking_status, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,11 +15,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,14 +28,14 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/DARTS-V2-${dataset} | ||||
| save_dir=./output/search-cell-${space}/DARTS-V2-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V2.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--config_path configs/nas-benchmark/algos/DARTS.config \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--track_running_stats 1 \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -1,11 +1,11 @@ | ||||
| #!/bin/bash | ||||
| # Efficient Neural Architecture Search via Parameter Sharing, ICML 2018 | ||||
| # bash ./scripts-search/scripts/algos/ENAS.sh cifar10 -1 | ||||
| # bash ./scripts-search/scripts/algos/ENAS.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, BN-tracking-status, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -16,11 +16,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -28,14 +29,14 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/ENAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/ENAS-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/ENAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--track_running_stats 1 \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--config_path ./configs/nas-benchmark/algos/ENAS.config \ | ||||
| 	--controller_entropy_weight 0.0001 \ | ||||
| 	--controller_bl_dec 0.99 \ | ||||
|   | ||||
| @@ -1,10 +1,10 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/GDAS.sh cifar10 -1 | ||||
| # bash ./scripts-search/algos/GDAS.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, BN-tracking, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,11 +15,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -27,14 +28,14 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--config_path configs/nas-benchmark/algos/GDAS.config \ | ||||
| 	--tau_max 10 --tau_min 0.1 --track_running_stats 1 \ | ||||
| 	--tau_max 10 --tau_min 0.1 --track_running_stats ${BN} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
							
								
								
									
										9
									
								
								scripts-search/algos/GRID-RL.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								scripts-search/algos/GRID-RL.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| #!/bin/bash | ||||
| echo script name: $0 | ||||
|  | ||||
| lrs="0.01 0.02 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0" | ||||
|  | ||||
| for lr in ${lrs} | ||||
| do | ||||
|   bash ./scripts-search/algos/REINFORCE.sh ${lr} -1 | ||||
| done | ||||
| @@ -20,7 +20,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/R-EA-${dataset} | ||||
|  | ||||
| @@ -28,7 +28,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000 \ | ||||
| 	--ea_cycles 100 --ea_population 10 --ea_sample_size 3 --ea_fast_by_api 1 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -1,11 +1,11 @@ | ||||
| #!/bin/bash | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 | ||||
| # bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1 | ||||
| # bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, BN-tracking-status, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -16,11 +16,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -28,14 +29,14 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/RANDOM-NAS-${dataset} | ||||
| save_dir=./output/search-cell-${space}/RANDOM-NAS-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/RANDOM-NAS.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--track_running_stats 1 \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--config_path ./configs/nas-benchmark/algos/RANDOM.config \ | ||||
| 	--select_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -1,10 +1,10 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/algos/REINFORCE.sh -1 | ||||
| # bash ./scripts-search/algos/REINFORCE.sh 0.001 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 1 ] ;then | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 1 parameters for seed" | ||||
|   echo "Need 2 parameters for LR and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -15,19 +15,20 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=cifar10 | ||||
| seed=$1 | ||||
| LR=$1 | ||||
| seed=$2 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/REINFORCE-${dataset} | ||||
| save_dir=./output/search-cell-${space}/REINFORCE-${dataset}-${LR} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000 \ | ||||
| 	--learning_rate 0.001 --EMA_momentum 0.9 \ | ||||
| 	--learning_rate ${LR} --EMA_momentum 0.9 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -19,7 +19,7 @@ seed=$1 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/RAND-${dataset} | ||||
|  | ||||
| @@ -27,7 +27,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
| #	--random_num 100 \ | ||||
|   | ||||
| @@ -1,11 +1,11 @@ | ||||
| #!/bin/bash | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 | ||||
| # bash ./scripts-search/scripts/algos/SETN.sh cifar10 -1 | ||||
| # bash ./scripts-search/scripts/algos/SETN.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and seed" | ||||
|   echo "Need 3 parameters for dataset, BN-tracking-status, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
| @@ -16,11 +16,12 @@ else | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| seed=$2 | ||||
| BN=$2 | ||||
| seed=$3 | ||||
| channel=16 | ||||
| num_cells=5 | ||||
| max_nodes=4 | ||||
| space=nas-bench-102 | ||||
| space=nas-bench-201 | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| @@ -28,15 +29,15 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/SETN-${dataset} | ||||
| save_dir=./output/search-cell-${space}/SETN-${dataset}-BN${BN} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \ | ||||
| 	--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \ | ||||
| 	--config_path configs/nas-benchmark/algos/SETN.config \ | ||||
| 	--track_running_stats 1 \ | ||||
| 	--track_running_stats ${BN} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--select_num 100 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
| @@ -30,6 +30,7 @@ elif [ ${dataset} == 'imagenet-1k' ]; then | ||||
|   workers=28 | ||||
|   cutout_length=-1 | ||||
| else | ||||
|   exit 1 | ||||
|   echo 'Unknown dataset: '${dataset} | ||||
| fi | ||||
|  | ||||
|   | ||||
| @@ -22,30 +22,44 @@ batch=256 | ||||
|  | ||||
| save_dir=./output/search-shape/TAS-INFER-${dataset}-${model} | ||||
|  | ||||
| if [ ${dataset} == 'cifar10' ] || [ ${dataset} == 'cifar100' ]; then | ||||
|   xpath=$TORCH_HOME/cifar.python | ||||
|   opt_config=./configs/opts/CIFAR-E300-W5-L1-COS.config | ||||
|   workers=4 | ||||
| elif [ ${dataset} == 'imagenet-1k' ]; then | ||||
|   xpath=$TORCH_HOME/ILSVRC2012 | ||||
|   #opt_config=./configs/opts/ImageNet-E120-Cos-Smooth.config | ||||
|   opt_config=./configs/opts/RImageNet-E120-Cos-Soft.config | ||||
|   workers=28 | ||||
| else | ||||
|   echo 'Unknown dataset: '${dataset} | ||||
|   exit 1 | ||||
| fi | ||||
|  | ||||
| python --version | ||||
|  | ||||
| # normal training | ||||
| xsave_dir=${save_dir}-NMT | ||||
| OMP_NUM_THREADS=4 python ./exps/basic-main.py --dataset ${dataset} \ | ||||
| 	--data_path $TORCH_HOME/cifar.python \ | ||||
| 	--data_path ${xpath} \ | ||||
| 	--model_config ./configs/NeurIPS-2019/${model}.config \ | ||||
| 	--optim_config ./configs/opts/CIFAR-E300-W5-L1-COS.config \ | ||||
| 	--optim_config ${opt_config} \ | ||||
| 	--procedure    basic \ | ||||
| 	--save_dir     ${xsave_dir} \ | ||||
| 	--cutout_length -1 \ | ||||
| 	--batch_size ${batch} --rand_seed ${rseed} --workers 6 \ | ||||
| 	--batch_size ${batch} --rand_seed ${rseed} --workers ${workers} \ | ||||
| 	--eval_frequency 1 --print_freq 100 --print_freq_eval 200 | ||||
|  | ||||
| # KD training | ||||
| xsave_dir=${save_dir}-KDT | ||||
| OMP_NUM_THREADS=4 python ./exps/KD-main.py --dataset ${dataset} \ | ||||
| 	--data_path $TORCH_HOME/cifar.python \ | ||||
| 	--data_path ${xpath} \ | ||||
| 	--model_config ./configs/NeurIPS-2019/${model}.config \ | ||||
| 	--optim_config  ./configs/opts/CIFAR-E300-W5-L1-COS.config \ | ||||
| 	--optim_config  ${opt_config} \ | ||||
| 	--KD_checkpoint ./.latent-data/basemodels/${dataset}/${model}.pth \ | ||||
| 	--procedure    Simple-KD \ | ||||
| 	--save_dir     ${xsave_dir} \ | ||||
| 	--KD_alpha 0.9 --KD_temperature 4 \ | ||||
| 	--cutout_length -1 \ | ||||
| 	--batch_size ${batch} --rand_seed ${rseed} --workers 6 \ | ||||
| 	--batch_size ${batch} --rand_seed ${rseed} --workers ${workers} \ | ||||
| 	--eval_frequency 1 --print_freq 100 --print_freq_eval 200 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user