Refine lib -> xautodl
This commit is contained in:
		| @@ -1,6 +1,6 @@ | |||||||
| # [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | # [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | ||||||
|  |  | ||||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | <img align="right" src="http://xuanyidong.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||||
|  |  | ||||||
| Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019. | Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019. | ||||||
| In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). | In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| # [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | # [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ||||||
|  |  | ||||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | <img align="right" src="http://xuanyidong.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||||
|  |  | ||||||
| <strong>Highlight</strong>: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | <strong>Highlight</strong>: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||||
|  |  | ||||||
|   | |||||||
| @@ -10,9 +10,9 @@ def count_parameters_in_MB(model): | |||||||
| def count_parameters(model_or_parameters, unit="mb"): | def count_parameters(model_or_parameters, unit="mb"): | ||||||
|     if isinstance(model_or_parameters, nn.Module): |     if isinstance(model_or_parameters, nn.Module): | ||||||
|         counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters()) |         counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters()) | ||||||
|     elif isinstance(models_or_parameters, nn.Parameter): |     elif isinstance(model_or_parameters, nn.Parameter): | ||||||
|         counts = models_or_parameters.numel() |         counts = models_or_parameters.numel() | ||||||
|     elif isinstance(models_or_parameters, (list, tuple)): |     elif isinstance(model_or_parameters, (list, tuple)): | ||||||
|         counts = sum(count_parameters(x, None) for x in models_or_parameters) |         counts = sum(count_parameters(x, None) for x in models_or_parameters) | ||||||
|     else: |     else: | ||||||
|         counts = sum(np.prod(v.size()) for v in model_or_parameters) |         counts = sum(np.prod(v.size()) for v in model_or_parameters) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user