Refine lib -> xautodl
This commit is contained in:
		| @@ -1,6 +1,6 @@ | ||||
| # [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||
| <img align="right" src="http://xuanyidong.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||
|  | ||||
| Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019. | ||||
| In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| # [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) | ||||
|  | ||||
| <img align="right" src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||
| <img align="right" src="http://xuanyidong.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||
|  | ||||
| <strong>Highlight</strong>: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||
|  | ||||
|   | ||||
| @@ -10,9 +10,9 @@ def count_parameters_in_MB(model): | ||||
| def count_parameters(model_or_parameters, unit="mb"): | ||||
|     if isinstance(model_or_parameters, nn.Module): | ||||
|         counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters()) | ||||
|     elif isinstance(models_or_parameters, nn.Parameter): | ||||
|     elif isinstance(model_or_parameters, nn.Parameter): | ||||
|         counts = models_or_parameters.numel() | ||||
|     elif isinstance(models_or_parameters, (list, tuple)): | ||||
|     elif isinstance(model_or_parameters, (list, tuple)): | ||||
|         counts = sum(count_parameters(x, None) for x in models_or_parameters) | ||||
|     else: | ||||
|         counts = sum(np.prod(v.size()) for v in model_or_parameters) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user