update README
This commit is contained in:
		
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							| @@ -17,7 +17,6 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | |||||||
|  |  | ||||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||||
|  |  | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | ||||||
|  |  | ||||||
| Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | ||||||
| @@ -43,6 +42,7 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n | |||||||
|  |  | ||||||
| ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ||||||
|  |  | ||||||
|  | <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="550"> | ||||||
| Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | ||||||
| @@ -55,6 +55,8 @@ Searching codes come soon! | |||||||
|  |  | ||||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ||||||
|  |  | ||||||
|  | <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="450"> | ||||||
|  |  | ||||||
| The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | ||||||
|  |  | ||||||
| Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||||
| @@ -83,10 +85,10 @@ If you find that this project helps your research, please consider citing some o | |||||||
|   year      = {2019} |   year      = {2019} | ||||||
| } | } | ||||||
| @inproceedings{dong2019search, | @inproceedings{dong2019search, | ||||||
|   title={Searching for A Robust Neural Architecture in Four GPU Hours}, |   title     = {Searching for A Robust Neural Architecture in Four GPU Hours}, | ||||||
|   author={Dong, Xuanyi and Yang, Yi}, |   author    = {Dong, Xuanyi and Yang, Yi}, | ||||||
|   booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |   booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, | ||||||
|   pages={1761--1770}, |   pages     = {1761--1770}, | ||||||
|   year={2019} |   year      = {2019} | ||||||
| } | } | ||||||
| ``` | ``` | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user