Upgrade LFNA
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna.py --env_version v1 | # python exps/LFNA/lfna.py --env_version v1 --device cuda | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
|   | |||||||
| @@ -55,6 +55,7 @@ class LFNA_Meta(super_core.SuperModule): | |||||||
|                     order=super_core.LayerOrder.PostNorm, |                     order=super_core.LayerOrder.PostNorm, | ||||||
|                 ) |                 ) | ||||||
|             ) |             ) | ||||||
|  |         layers.append(super_core.SuperLinear(time_embedding, time_embedding)) | ||||||
|         self.meta_corrector = super_core.SuperSequential(*layers) |         self.meta_corrector = super_core.SuperSequential(*layers) | ||||||
|  |  | ||||||
|         model_kwargs = dict( |         model_kwargs = dict( | ||||||
|   | |||||||
| @@ -110,8 +110,10 @@ class SyntheticDEnv(data.Dataset): | |||||||
|         if self._seq_length is None: |         if self._seq_length is None: | ||||||
|             return self.__call__(timestamp) |             return self.__call__(timestamp) | ||||||
|         else: |         else: | ||||||
|  |             noise = random.random() * self.timestamp_interval * 0.3 | ||||||
|             timestamps = [ |             timestamps = [ | ||||||
|                 timestamp + i * self.timestamp_interval for i in range(self._seq_length) |                 timestamp + i * self.timestamp_interval + noise | ||||||
|  |                 for i in range(self._seq_length) | ||||||
|             ] |             ] | ||||||
|             xdata = [self.__call__(timestamp) for timestamp in timestamps] |             xdata = [self.__call__(timestamp) for timestamp in timestamps] | ||||||
|             return zip_sequence(xdata) |             return zip_sequence(xdata) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user