Remove TF codes
This commit is contained in:
		| @@ -70,7 +70,7 @@ def evaluate(api, weight_dir, data: str): | |||||||
|       ok += 1 |       ok += 1 | ||||||
|       norms.append(cur_norm) |       norms.append(cur_norm) | ||||||
|     # query the accuracy |     # query the accuracy | ||||||
|     info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=777) |     info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=888 if isinstance(api, NASBench201API) else 777) | ||||||
|     accuracies.append(info['accuracy']) |     accuracies.append(info['accuracy']) | ||||||
|     del net, meta_info |     del net, meta_info | ||||||
|     # print the information |     # print the information | ||||||
|   | |||||||
| @@ -1,32 +0,0 @@ | |||||||
| ################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # |  | ||||||
| ################################################## |  | ||||||
| import torch |  | ||||||
| from os import path as osp |  | ||||||
|  |  | ||||||
| __all__ = ['get_cell_based_tiny_net', 'get_search_spaces'] |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # the cell-based NAS models |  | ||||||
| def get_cell_based_tiny_net(config): |  | ||||||
|   group_names = ['GDAS', 'DARTS'] |  | ||||||
|   if config.name in group_names: |  | ||||||
|     from .cell_searchs import nas_super_nets |  | ||||||
|     from .cell_operations import SearchSpaceNames |  | ||||||
|     if isinstance(config.space, str): search_space = SearchSpaceNames[config.space] |  | ||||||
|     else: search_space = config.space |  | ||||||
|     return nas_super_nets[config.name]( |  | ||||||
|                   config.C, config.N, config.max_nodes, |  | ||||||
|                   config.num_classes, search_space, config.affine) |  | ||||||
|   else: |  | ||||||
|     raise ValueError('invalid network name : {:}'.format(config.name)) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op |  | ||||||
| def get_search_spaces(xtype, name): |  | ||||||
|   if xtype == 'cell': |  | ||||||
|     from .cell_operations import SearchSpaceNames |  | ||||||
|     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) |  | ||||||
|     return SearchSpaceNames[name] |  | ||||||
|   else: |  | ||||||
|     raise ValueError('invalid search-space type is {:}'.format(xtype)) |  | ||||||
| @@ -1,150 +0,0 @@ | |||||||
| ################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # |  | ||||||
| ################################################## |  | ||||||
| import tensorflow as tf |  | ||||||
|  |  | ||||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] |  | ||||||
|  |  | ||||||
| OPS = { |  | ||||||
|   'none'        : lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), |  | ||||||
|   'avg_pool_3x3': lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg', affine), |  | ||||||
|   'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine), |  | ||||||
|   'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine), |  | ||||||
|   'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine), |  | ||||||
|   'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine) |  | ||||||
| } |  | ||||||
|  |  | ||||||
| NAS_BENCH_201         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] |  | ||||||
|  |  | ||||||
| SearchSpaceNames = { |  | ||||||
|                     'nas-bench-201': NAS_BENCH_201, |  | ||||||
|                    } |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class POOLING(tf.keras.layers.Layer): |  | ||||||
|  |  | ||||||
|   def __init__(self, C_in, C_out, stride, mode, affine): |  | ||||||
|     super(POOLING, self).__init__() |  | ||||||
|     if C_in == C_out: |  | ||||||
|       self.preprocess = None |  | ||||||
|     else: |  | ||||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, affine) |  | ||||||
|     if mode == 'avg'  : self.op = tf.keras.layers.AvgPool2D((3,3), strides=stride, padding='same') |  | ||||||
|     elif mode == 'max': self.op = tf.keras.layers.MaxPool2D((3,3), strides=stride, padding='same') |  | ||||||
|     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) |  | ||||||
|  |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     if self.preprocess: x = self.preprocess(inputs) |  | ||||||
|     else              : x = inputs |  | ||||||
|     return self.op(x) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class Identity(tf.keras.layers.Layer): |  | ||||||
|   def __init__(self, C_in, C_out, stride): |  | ||||||
|     super(Identity, self).__init__() |  | ||||||
|     if C_in != C_out or stride != 1: |  | ||||||
|       self.layer = tf.keras.layers.Conv2D(C_out, 3, stride, padding='same', use_bias=False) |  | ||||||
|     else: |  | ||||||
|       self.layer = None |  | ||||||
|    |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     x = inputs |  | ||||||
|     if self.layer is not None: |  | ||||||
|       x = self.layer(x) |  | ||||||
|     return x |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class Zero(tf.keras.layers.Layer): |  | ||||||
|   def __init__(self, C_in, C_out, stride): |  | ||||||
|     super(Zero, self).__init__() |  | ||||||
|     if C_in != C_out: |  | ||||||
|       self.layer = tf.keras.layers.Conv2D(C_out, 1, stride, padding='same', use_bias=False) |  | ||||||
|     elif stride != 1: |  | ||||||
|       self.layer = tf.keras.layers.AvgPool2D((stride,stride), None, padding="same") |  | ||||||
|     else: |  | ||||||
|       self.layer = None |  | ||||||
|    |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     x = tf.zeros_like(inputs) |  | ||||||
|     if self.layer is not None: |  | ||||||
|       x = self.layer(x) |  | ||||||
|     return x |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class ReLUConvBN(tf.keras.layers.Layer): |  | ||||||
|   def __init__(self, C_in, C_out, kernel_size, strides, affine): |  | ||||||
|     super(ReLUConvBN, self).__init__() |  | ||||||
|     self.C_in = C_in |  | ||||||
|     self.relu = tf.keras.activations.relu |  | ||||||
|     self.conv = tf.keras.layers.Conv2D(C_out, kernel_size, strides, padding='same', use_bias=False) |  | ||||||
|     self.bn   = tf.keras.layers.BatchNormalization(center=affine, scale=affine) |  | ||||||
|    |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     x = self.relu(inputs) |  | ||||||
|     x = self.conv(x) |  | ||||||
|     x = self.bn(x, training) |  | ||||||
|     return x |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class FactorizedReduce(tf.keras.layers.Layer): |  | ||||||
|   def __init__(self, C_in, C_out, stride, affine): |  | ||||||
|     assert output_filters % 2 == 0, ('Need even number of filters when using this factorized reduction.') |  | ||||||
|     self.stride == stride |  | ||||||
|     self.relu   = tf.keras.activations.relu |  | ||||||
|     if stride == 1: |  | ||||||
|       self.layer = tf.keras.Sequential([ |  | ||||||
|                           tf.keras.layers.Conv2D(C_out, 1, strides, padding='same', use_bias=False), |  | ||||||
|                           tf.keras.layers.BatchNormalization(center=affine, scale=affine)]) |  | ||||||
|     elif stride == 2: |  | ||||||
|       stride_spec = [1, stride, stride, 1] # data_format == 'NHWC' |  | ||||||
|       self.layer1 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False) |  | ||||||
|       self.layer2 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False) |  | ||||||
|       self.bn     = tf.keras.layers.BatchNormalization(center=affine, scale=affine) |  | ||||||
|     else: |  | ||||||
|       raise ValueError('invalid stride={:}'.format(stride)) |  | ||||||
|  |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     x = self.relu(inputs) |  | ||||||
|     if self.stride == 1: |  | ||||||
|       return self.layer(x, training) |  | ||||||
|     else: |  | ||||||
|       path1 = x |  | ||||||
|       path2 = tf.pad(x, [[0, 0], [0, 1], [0, 1], [0, 0]])[:, 1:, 1:, :] # data_format == 'NHWC' |  | ||||||
|       x1 = self.layer1(path1) |  | ||||||
|       x2 = self.layer2(path2) |  | ||||||
|       final_path = tf.concat(values=[x1, x2], axis=3) |  | ||||||
|       return self.bn(final_path) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class ResNetBasicblock(tf.keras.layers.Layer): |  | ||||||
|  |  | ||||||
|   def __init__(self, inplanes, planes, stride, affine=True): |  | ||||||
|     super(ResNetBasicblock, self).__init__() |  | ||||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) |  | ||||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, affine) |  | ||||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, affine) |  | ||||||
|     if stride == 2: |  | ||||||
|       self.downsample = tf.keras.Sequential([ |  | ||||||
|                                 tf.keras.layers.AvgPool2D((stride,stride), None, padding="same"), |  | ||||||
|                                 tf.keras.layers.Conv2D(planes, 1, 1, padding='same', use_bias=False)]) |  | ||||||
|     elif inplanes != planes: |  | ||||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, stride, affine) |  | ||||||
|     else: |  | ||||||
|       self.downsample = None |  | ||||||
|     self.addition = tf.keras.layers.Add() |  | ||||||
|     self.in_dim  = inplanes |  | ||||||
|     self.out_dim = planes |  | ||||||
|     self.stride  = stride |  | ||||||
|     self.num_conv = 2 |  | ||||||
|  |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|  |  | ||||||
|     basicblock = self.conv_a(inputs, training) |  | ||||||
|     basicblock = self.conv_b(basicblock, training) |  | ||||||
|  |  | ||||||
|     if self.downsample is not None: |  | ||||||
|       residual = self.downsample(inputs) |  | ||||||
|     else: |  | ||||||
|       residual = inputs |  | ||||||
|     return self.addition([residual, basicblock]) |  | ||||||
| @@ -1,8 +0,0 @@ | |||||||
| ################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # |  | ||||||
| ################################################## |  | ||||||
| from .search_model_gdas     import TinyNetworkGDAS |  | ||||||
| from .search_model_darts    import TinyNetworkDARTS |  | ||||||
|  |  | ||||||
| nas_super_nets = {'GDAS' : TinyNetworkGDAS, |  | ||||||
|                   'DARTS': TinyNetworkDARTS} |  | ||||||
| @@ -1,50 +0,0 @@ | |||||||
| ################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # |  | ||||||
| ################################################## |  | ||||||
| import math, random |  | ||||||
| import tensorflow as tf |  | ||||||
| from copy import deepcopy |  | ||||||
| from ..cell_operations import OPS |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class NAS201SearchCell(tf.keras.layers.Layer): |  | ||||||
|  |  | ||||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False): |  | ||||||
|     super(NAS201SearchCell, self).__init__() |  | ||||||
|  |  | ||||||
|     self.op_names  = deepcopy(op_names) |  | ||||||
|     self.max_nodes = max_nodes |  | ||||||
|     self.in_dim    = C_in |  | ||||||
|     self.out_dim   = C_out |  | ||||||
|     self.edge_keys = [] |  | ||||||
|     for i in range(1, max_nodes): |  | ||||||
|       for j in range(i): |  | ||||||
|         node_str = '{:}<-{:}'.format(i, j) |  | ||||||
|         if j == 0: |  | ||||||
|           xlists = [OPS[op_name](C_in , C_out, stride, affine) for op_name in op_names] |  | ||||||
|         else: |  | ||||||
|           xlists = [OPS[op_name](C_in , C_out,      1, affine) for op_name in op_names] |  | ||||||
|         for k, op in enumerate(xlists): |  | ||||||
|           setattr(self, '{:}.{:}'.format(node_str, k), op) |  | ||||||
|         self.edge_keys.append( node_str ) |  | ||||||
|     self.edge_keys  = sorted(self.edge_keys) |  | ||||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} |  | ||||||
|     self.num_edges  = len(self.edge_keys) |  | ||||||
|  |  | ||||||
|   def call(self, inputs, weightss, training): |  | ||||||
|     w_lst = tf.split(weightss, self.num_edges, 0) |  | ||||||
|     nodes = [inputs] |  | ||||||
|     for i in range(1, self.max_nodes): |  | ||||||
|       inter_nodes = [] |  | ||||||
|       for j in range(i): |  | ||||||
|         node_str = '{:}<-{:}'.format(i, j) |  | ||||||
|         edge_idx = self.edge2index[node_str] |  | ||||||
|         op_outps = [] |  | ||||||
|         for k, op_name in enumerate(self.op_names): |  | ||||||
|           op = getattr(self, '{:}.{:}'.format(node_str, k)) |  | ||||||
|           op_outps.append( op(nodes[j], training) ) |  | ||||||
|         stack_op_outs = tf.stack(op_outps, axis=-1) |  | ||||||
|         weighted_sums = tf.math.multiply(stack_op_outs, w_lst[edge_idx]) |  | ||||||
|         inter_nodes.append( tf.math.reduce_sum(weighted_sums, axis=-1) ) |  | ||||||
|       nodes.append( tf.math.add_n(inter_nodes) ) |  | ||||||
|     return nodes[-1] |  | ||||||
| @@ -1,83 +0,0 @@ | |||||||
| import tensorflow as tf |  | ||||||
| import numpy as np |  | ||||||
| from copy import deepcopy |  | ||||||
| from ..cell_operations import ResNetBasicblock |  | ||||||
| from .search_cells     import NAS201SearchCell as SearchCell |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TinyNetworkDARTS(tf.keras.Model): |  | ||||||
|  |  | ||||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine): |  | ||||||
|     super(TinyNetworkDARTS, self).__init__() |  | ||||||
|     self._C        = C |  | ||||||
|     self._layerN   = N |  | ||||||
|     self.max_nodes = max_nodes |  | ||||||
|     self.stem = tf.keras.Sequential([ |  | ||||||
|                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False), |  | ||||||
|                     tf.keras.layers.BatchNormalization()], name='stem') |  | ||||||
|    |  | ||||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     |  | ||||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N |  | ||||||
|  |  | ||||||
|     C_prev, num_edge, edge2index = C, None, None |  | ||||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): |  | ||||||
|       cell_prefix = 'cell-{:03d}'.format(index) |  | ||||||
|       #with tf.name_scope(cell_prefix) as scope: |  | ||||||
|       if reduction: |  | ||||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) |  | ||||||
|       else: |  | ||||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine) |  | ||||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index |  | ||||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) |  | ||||||
|       C_prev = cell.out_dim |  | ||||||
|       setattr(self, cell_prefix, cell) |  | ||||||
|     self.num_layers = len(layer_reductions) |  | ||||||
|     self.op_names   = deepcopy( search_space ) |  | ||||||
|     self.edge2index = edge2index |  | ||||||
|     self.num_edge   = num_edge |  | ||||||
|     self.lastact    = tf.keras.Sequential([ |  | ||||||
|                         tf.keras.layers.BatchNormalization(), |  | ||||||
|                         tf.keras.layers.ReLU(), |  | ||||||
|                         tf.keras.layers.GlobalAvgPool2D(), |  | ||||||
|                         tf.keras.layers.Flatten(), |  | ||||||
|                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact') |  | ||||||
|     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) |  | ||||||
|     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001) |  | ||||||
|     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding') |  | ||||||
|  |  | ||||||
|   def get_alphas(self): |  | ||||||
|     xlist = self.trainable_variables |  | ||||||
|     return [x for x in xlist if 'arch-encoding' in x.name] |  | ||||||
|  |  | ||||||
|   def get_weights(self): |  | ||||||
|     xlist = self.trainable_variables |  | ||||||
|     return [x for x in xlist if 'arch-encoding' not in x.name] |  | ||||||
|  |  | ||||||
|   def get_np_alphas(self): |  | ||||||
|     arch_nps = self.arch_parameters.numpy() |  | ||||||
|     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True) |  | ||||||
|     return arch_ops |  | ||||||
|  |  | ||||||
|   def genotype(self): |  | ||||||
|     genotypes, arch_nps = [], self.arch_parameters.numpy() |  | ||||||
|     for i in range(1, self.max_nodes): |  | ||||||
|       xlist = [] |  | ||||||
|       for j in range(i): |  | ||||||
|         node_str = '{:}<-{:}'.format(i, j) |  | ||||||
|         weights = arch_nps[ self.edge2index[node_str] ] |  | ||||||
|         op_name = self.op_names[ weights.argmax().item() ] |  | ||||||
|         xlist.append((op_name, j)) |  | ||||||
|       genotypes.append( tuple(xlist) ) |  | ||||||
|     return genotypes |  | ||||||
|  |  | ||||||
|   def call(self, inputs, training): |  | ||||||
|     weightss = tf.nn.softmax(self.arch_parameters, axis=1) |  | ||||||
|     feature = self.stem(inputs, training) |  | ||||||
|     for idx in range(self.num_layers): |  | ||||||
|       cell = getattr(self, 'cell-{:03d}'.format(idx)) |  | ||||||
|       if isinstance(cell, SearchCell): |  | ||||||
|         feature = cell.call(feature, weightss, training) |  | ||||||
|       else: |  | ||||||
|         feature = cell(feature, training) |  | ||||||
|     logits = self.lastact(feature, training) |  | ||||||
|     return logits |  | ||||||
| @@ -1,99 +0,0 @@ | |||||||
| ########################################################################### |  | ||||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # |  | ||||||
| ########################################################################### |  | ||||||
| import tensorflow as tf |  | ||||||
| import numpy as np |  | ||||||
| from copy import deepcopy |  | ||||||
| from ..cell_operations import ResNetBasicblock |  | ||||||
| from .search_cells     import NAS201SearchCell as SearchCell |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def sample_gumbel(shape, eps=1e-20): |  | ||||||
|   U = tf.random.uniform(shape, minval=0, maxval=1) |  | ||||||
|   return -tf.math.log(-tf.math.log(U + eps) + eps) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def gumbel_softmax(logits, temperature): |  | ||||||
|   gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits)) |  | ||||||
|   y = tf.nn.softmax(gumbel_softmax_sample / temperature) |  | ||||||
|   return y |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TinyNetworkGDAS(tf.keras.Model): |  | ||||||
|  |  | ||||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine): |  | ||||||
|     super(TinyNetworkGDAS, self).__init__() |  | ||||||
|     self._C        = C |  | ||||||
|     self._layerN   = N |  | ||||||
|     self.max_nodes = max_nodes |  | ||||||
|     self.stem = tf.keras.Sequential([ |  | ||||||
|                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False), |  | ||||||
|                     tf.keras.layers.BatchNormalization()], name='stem') |  | ||||||
|    |  | ||||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     |  | ||||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N |  | ||||||
|  |  | ||||||
|     C_prev, num_edge, edge2index = C, None, None |  | ||||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): |  | ||||||
|       cell_prefix = 'cell-{:03d}'.format(index) |  | ||||||
|       #with tf.name_scope(cell_prefix) as scope: |  | ||||||
|       if reduction: |  | ||||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) |  | ||||||
|       else: |  | ||||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine) |  | ||||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index |  | ||||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) |  | ||||||
|       C_prev = cell.out_dim |  | ||||||
|       setattr(self, cell_prefix, cell) |  | ||||||
|     self.num_layers = len(layer_reductions) |  | ||||||
|     self.op_names   = deepcopy( search_space ) |  | ||||||
|     self.edge2index = edge2index |  | ||||||
|     self.num_edge   = num_edge |  | ||||||
|     self.lastact    = tf.keras.Sequential([ |  | ||||||
|                         tf.keras.layers.BatchNormalization(), |  | ||||||
|                         tf.keras.layers.ReLU(), |  | ||||||
|                         tf.keras.layers.GlobalAvgPool2D(), |  | ||||||
|                         tf.keras.layers.Flatten(), |  | ||||||
|                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact') |  | ||||||
|     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) |  | ||||||
|     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001) |  | ||||||
|     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding') |  | ||||||
|  |  | ||||||
|   def get_alphas(self): |  | ||||||
|     xlist = self.trainable_variables |  | ||||||
|     return [x for x in xlist if 'arch-encoding' in x.name] |  | ||||||
|  |  | ||||||
|   def get_weights(self): |  | ||||||
|     xlist = self.trainable_variables |  | ||||||
|     return [x for x in xlist if 'arch-encoding' not in x.name] |  | ||||||
|  |  | ||||||
|   def get_np_alphas(self): |  | ||||||
|     arch_nps = self.arch_parameters.numpy() |  | ||||||
|     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True) |  | ||||||
|     return arch_ops |  | ||||||
|  |  | ||||||
|   def genotype(self): |  | ||||||
|     genotypes, arch_nps = [], self.arch_parameters.numpy() |  | ||||||
|     for i in range(1, self.max_nodes): |  | ||||||
|       xlist = [] |  | ||||||
|       for j in range(i): |  | ||||||
|         node_str = '{:}<-{:}'.format(i, j) |  | ||||||
|         weights = arch_nps[ self.edge2index[node_str] ] |  | ||||||
|         op_name = self.op_names[ weights.argmax().item() ] |  | ||||||
|         xlist.append((op_name, j)) |  | ||||||
|       genotypes.append( tuple(xlist) ) |  | ||||||
|     return genotypes |  | ||||||
|  |  | ||||||
|   #  |  | ||||||
|   def call(self, inputs, tau, training): |  | ||||||
|     weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1), |  | ||||||
|                                 lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau)) |  | ||||||
|     feature = self.stem(inputs, training) |  | ||||||
|     for idx in range(self.num_layers): |  | ||||||
|       cell = getattr(self, 'cell-{:03d}'.format(idx)) |  | ||||||
|       if isinstance(cell, SearchCell): |  | ||||||
|         feature = cell.call(feature, weightss, training) |  | ||||||
|       else: |  | ||||||
|         feature = cell(feature, training) |  | ||||||
|     logits = self.lastact(feature, training) |  | ||||||
|     return logits |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| from .weight_decay_optimizers import AdamW, SGDW |  | ||||||
| @@ -1,422 +0,0 @@ | |||||||
| # Copyright 2019 The TensorFlow Authors. All Rights Reserved. |  | ||||||
| # |  | ||||||
| # Licensed under the Apache License, Version 2.0 (the "License"); |  | ||||||
| # you may not use this file except in compliance with the License. |  | ||||||
| # You may obtain a copy of the License at |  | ||||||
| # |  | ||||||
| #     http://www.apache.org/licenses/LICENSE-2.0 |  | ||||||
| # |  | ||||||
| # Unless required by applicable law or agreed to in writing, software |  | ||||||
| # distributed under the License is distributed on an "AS IS" BASIS, |  | ||||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |  | ||||||
| # See the License for the specific language governing permissions and |  | ||||||
| # limitations under the License. |  | ||||||
| # ============================================================================== |  | ||||||
| """Base class to make optimizers weight decay ready.""" |  | ||||||
| from __future__ import absolute_import |  | ||||||
| from __future__ import division |  | ||||||
| from __future__ import print_function |  | ||||||
|  |  | ||||||
| import tensorflow as tf |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class DecoupledWeightDecayExtension(object): |  | ||||||
|     """This class allows to extend optimizers with decoupled weight decay. |  | ||||||
|  |  | ||||||
|     It implements the decoupled weight decay described by Loshchilov & Hutter |  | ||||||
|     (https://arxiv.org/pdf/1711.05101.pdf), in which the weight decay is |  | ||||||
|     decoupled from the optimization steps w.r.t. to the loss function. |  | ||||||
|     For SGD variants, this simplifies hyperparameter search since it decouples |  | ||||||
|     the settings of weight decay and learning rate. |  | ||||||
|     For adaptive gradient algorithms, it regularizes variables with large |  | ||||||
|     gradients more than L2 regularization would, which was shown to yield |  | ||||||
|     better training loss and generalization error in the paper above. |  | ||||||
|  |  | ||||||
|     This class alone is not an optimizer but rather extends existing |  | ||||||
|     optimizers with decoupled weight decay. We explicitly define the two |  | ||||||
|     examples used in the above paper (SGDW and AdamW), but in general this |  | ||||||
|     can extend any OptimizerX by using |  | ||||||
|     `extend_with_decoupled_weight_decay( |  | ||||||
|         OptimizerX, weight_decay=weight_decay)`. |  | ||||||
|     In order for it to work, it must be the first class the Optimizer with |  | ||||||
|     weight decay inherits from, e.g. |  | ||||||
|  |  | ||||||
|     ```python |  | ||||||
|     class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): |  | ||||||
|       def __init__(self, weight_decay, *args, **kwargs): |  | ||||||
|         super(AdamW, self).__init__(weight_decay, *args, **kwargs). |  | ||||||
|     ``` |  | ||||||
|  |  | ||||||
|     Note: this extension decays weights BEFORE applying the update based |  | ||||||
|     on the gradient, i.e. this extension only has the desired behaviour for |  | ||||||
|     optimizers which do not depend on the value of'var' in the update step! |  | ||||||
|  |  | ||||||
|     Note: when applying a decay to the learning rate, be sure to manually apply |  | ||||||
|     the decay to the `weight_decay` as well. For example: |  | ||||||
|  |  | ||||||
|     ```python |  | ||||||
|     step = tf.Variable(0, trainable=False) |  | ||||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( |  | ||||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) |  | ||||||
|     # lr and wd can be a function or a tensor |  | ||||||
|     lr = 1e-1 * schedule(step) |  | ||||||
|     wd = lambda: 1e-4 * schedule(step) |  | ||||||
|  |  | ||||||
|     # ... |  | ||||||
|  |  | ||||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) |  | ||||||
|     ``` |  | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     def __init__(self, weight_decay, **kwargs): |  | ||||||
|         """Extension class that adds weight decay to an optimizer. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             weight_decay: A `Tensor` or a floating point value, the factor by |  | ||||||
|                 which a variable is decayed in the update step. |  | ||||||
|             **kwargs: Optional list or tuple or set of `Variable` objects to |  | ||||||
|                 decay. |  | ||||||
|         """ |  | ||||||
|         wd = kwargs.pop('weight_decay', weight_decay) |  | ||||||
|         super(DecoupledWeightDecayExtension, self).__init__(**kwargs) |  | ||||||
|         self._decay_var_list = None  # is set in minimize or apply_gradients |  | ||||||
|         self._set_hyper('weight_decay', wd) |  | ||||||
|  |  | ||||||
|     def get_config(self): |  | ||||||
|         config = super(DecoupledWeightDecayExtension, self).get_config() |  | ||||||
|         config.update({ |  | ||||||
|             'weight_decay': |  | ||||||
|             self._serialize_hyperparameter('weight_decay'), |  | ||||||
|         }) |  | ||||||
|         return config |  | ||||||
|  |  | ||||||
|     def minimize(self, |  | ||||||
|                  loss, |  | ||||||
|                  var_list, |  | ||||||
|                  grad_loss=None, |  | ||||||
|                  name=None, |  | ||||||
|                  decay_var_list=None): |  | ||||||
|         """Minimize `loss` by updating `var_list`. |  | ||||||
|  |  | ||||||
|         This method simply computes gradient using `tf.GradientTape` and calls |  | ||||||
|         `apply_gradients()`. If you want to process the gradient before |  | ||||||
|         applying then call `tf.GradientTape` and `apply_gradients()` explicitly |  | ||||||
|         instead of using this function. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             loss: A callable taking no arguments which returns the value to |  | ||||||
|                 minimize. |  | ||||||
|             var_list: list or tuple of `Variable` objects to update to |  | ||||||
|                 minimize `loss`, or a callable returning the list or tuple of |  | ||||||
|                 `Variable` objects. Use callable when the variable list would |  | ||||||
|                 otherwise be incomplete before `minimize` since the variables |  | ||||||
|                 are created at the first time `loss` is called. |  | ||||||
|             grad_loss: Optional. A `Tensor` holding the gradient computed for |  | ||||||
|                 `loss`. |  | ||||||
|             decay_var_list: Optional list of variables to be decayed. Defaults |  | ||||||
|                 to all variables in var_list. |  | ||||||
|             name: Optional name for the returned operation. |  | ||||||
|         Returns: |  | ||||||
|             An Operation that updates the variables in `var_list`.  If |  | ||||||
|             `global_step` was not `None`, that operation also increments |  | ||||||
|             `global_step`. |  | ||||||
|         Raises: |  | ||||||
|             ValueError: If some of the variables are not `Variable` objects. |  | ||||||
|         """ |  | ||||||
|         self._decay_var_list = set(decay_var_list) if decay_var_list else False |  | ||||||
|         return super(DecoupledWeightDecayExtension, self).minimize( |  | ||||||
|             loss, var_list=var_list, grad_loss=grad_loss, name=name) |  | ||||||
|  |  | ||||||
|     def apply_gradients(self, grads_and_vars, name=None, decay_var_list=None): |  | ||||||
|         """Apply gradients to variables. |  | ||||||
|  |  | ||||||
|         This is the second part of `minimize()`. It returns an `Operation` that |  | ||||||
|         applies gradients. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             grads_and_vars: List of (gradient, variable) pairs. |  | ||||||
|             name: Optional name for the returned operation.  Default to the |  | ||||||
|                 name passed to the `Optimizer` constructor. |  | ||||||
|             decay_var_list: Optional list of variables to be decayed. Defaults |  | ||||||
|                 to all variables in var_list. |  | ||||||
|         Returns: |  | ||||||
|             An `Operation` that applies the specified gradients. If |  | ||||||
|             `global_step` was not None, that operation also increments |  | ||||||
|             `global_step`. |  | ||||||
|         Raises: |  | ||||||
|             TypeError: If `grads_and_vars` is malformed. |  | ||||||
|             ValueError: If none of the variables have gradients. |  | ||||||
|         """ |  | ||||||
|         self._decay_var_list = set(decay_var_list) if decay_var_list else False |  | ||||||
|         return super(DecoupledWeightDecayExtension, self).apply_gradients( |  | ||||||
|             grads_and_vars, name=name) |  | ||||||
|  |  | ||||||
|     def _decay_weights_op(self, var): |  | ||||||
|         if not self._decay_var_list or var in self._decay_var_list: |  | ||||||
|             return var.assign_sub( |  | ||||||
|                 self._get_hyper('weight_decay', var.dtype) * var, |  | ||||||
|                 self._use_locking) |  | ||||||
|         return tf.no_op() |  | ||||||
|  |  | ||||||
|     def _decay_weights_sparse_op(self, var, indices): |  | ||||||
|         if not self._decay_var_list or var in self._decay_var_list: |  | ||||||
|             update = (-self._get_hyper('weight_decay', var.dtype) * tf.gather( |  | ||||||
|                 var, indices)) |  | ||||||
|             return self._resource_scatter_add(var, indices, update) |  | ||||||
|         return tf.no_op() |  | ||||||
|  |  | ||||||
|     # Here, we overwrite the apply functions that the base optimizer calls. |  | ||||||
|     # super().apply_x resolves to the apply_x function of the BaseOptimizer. |  | ||||||
|  |  | ||||||
|     def _resource_apply_dense(self, grad, var): |  | ||||||
|         with tf.control_dependencies([self._decay_weights_op(var)]): |  | ||||||
|             return super(DecoupledWeightDecayExtension, |  | ||||||
|                          self)._resource_apply_dense(grad, var) |  | ||||||
|  |  | ||||||
|     def _resource_apply_sparse(self, grad, var, indices): |  | ||||||
|         decay_op = self._decay_weights_sparse_op(var, indices) |  | ||||||
|         with tf.control_dependencies([decay_op]): |  | ||||||
|             return super(DecoupledWeightDecayExtension, |  | ||||||
|                          self)._resource_apply_sparse(grad, var, indices) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def extend_with_decoupled_weight_decay(base_optimizer): |  | ||||||
|     """Factory function returning an optimizer class with decoupled weight |  | ||||||
|     decay. |  | ||||||
|  |  | ||||||
|     Returns an optimizer class. An instance of the returned class computes the |  | ||||||
|     update step of `base_optimizer` and additionally decays the weights. |  | ||||||
|     E.g., the class returned by |  | ||||||
|     `extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam)` is |  | ||||||
|     equivalent to `tfa.optimizers.AdamW`. |  | ||||||
|  |  | ||||||
|     The API of the new optimizer class slightly differs from the API of the |  | ||||||
|     base optimizer: |  | ||||||
|     - The first argument to the constructor is the weight decay rate. |  | ||||||
|     - `minimize` and `apply_gradients` accept the optional keyword argument |  | ||||||
|       `decay_var_list`, which specifies the variables that should be decayed. |  | ||||||
|       If `None`, all variables that are optimized are decayed. |  | ||||||
|  |  | ||||||
|     Usage example: |  | ||||||
|     ```python |  | ||||||
|     # MyAdamW is a new class |  | ||||||
|     MyAdamW = extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam) |  | ||||||
|     # Create a MyAdamW object |  | ||||||
|     optimizer = MyAdamW(weight_decay=0.001, learning_rate=0.001) |  | ||||||
|     # update var1, var2 but only decay var1 |  | ||||||
|     optimizer.minimize(loss, var_list=[var1, var2], decay_variables=[var1]) |  | ||||||
|  |  | ||||||
|     Note: this extension decays weights BEFORE applying the update based |  | ||||||
|     on the gradient, i.e. this extension only has the desired behaviour for |  | ||||||
|     optimizers which do not depend on the value of 'var' in the update step! |  | ||||||
|  |  | ||||||
|     Note: when applying a decay to the learning rate, be sure to manually apply |  | ||||||
|     the decay to the `weight_decay` as well. For example: |  | ||||||
|  |  | ||||||
|     ```python |  | ||||||
|     step = tf.Variable(0, trainable=False) |  | ||||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( |  | ||||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) |  | ||||||
|     # lr and wd can be a function or a tensor |  | ||||||
|     lr = 1e-1 * schedule(step) |  | ||||||
|     wd = lambda: 1e-4 * schedule(step) |  | ||||||
|  |  | ||||||
|     # ... |  | ||||||
|  |  | ||||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) |  | ||||||
|     ``` |  | ||||||
|  |  | ||||||
|     Note: you might want to register your own custom optimizer using |  | ||||||
|     `tf.keras.utils.get_custom_objects()`. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|         base_optimizer: An optimizer class that inherits from |  | ||||||
|             tf.optimizers.Optimizer. |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|         A new optimizer class that inherits from DecoupledWeightDecayExtension |  | ||||||
|         and base_optimizer. |  | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecayExtension, |  | ||||||
|                                             base_optimizer): |  | ||||||
|         """Base_optimizer with decoupled weight decay. |  | ||||||
|  |  | ||||||
|         This class computes the update step of `base_optimizer` and |  | ||||||
|         additionally decays the variable with the weight decay being |  | ||||||
|         decoupled from the optimization steps w.r.t. to the loss |  | ||||||
|         function, as described by Loshchilov & Hutter |  | ||||||
|         (https://arxiv.org/pdf/1711.05101.pdf). For SGD variants, this |  | ||||||
|         simplifies hyperparameter search since it decouples the settings |  | ||||||
|         of weight decay and learning rate. For adaptive gradient |  | ||||||
|         algorithms, it regularizes variables with large gradients more |  | ||||||
|         than L2 regularization would, which was shown to yield better |  | ||||||
|         training loss and generalization error in the paper above. |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         def __init__(self, weight_decay, *args, **kwargs): |  | ||||||
|             # super delegation is necessary here |  | ||||||
|             super(OptimizerWithDecoupledWeightDecay, self).__init__( |  | ||||||
|                 weight_decay, *args, **kwargs) |  | ||||||
|  |  | ||||||
|     return OptimizerWithDecoupledWeightDecay |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class SGDW(DecoupledWeightDecayExtension, tf.keras.optimizers.SGD): |  | ||||||
|     """Optimizer that implements the Momentum algorithm with weight_decay. |  | ||||||
|  |  | ||||||
|     This is an implementation of the SGDW optimizer described in "Decoupled |  | ||||||
|     Weight Decay Regularization" by Loshchilov & Hutter |  | ||||||
|     (https://arxiv.org/abs/1711.05101) |  | ||||||
|     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). |  | ||||||
|     It computes the update step of `tf.keras.optimizers.SGD` and additionally |  | ||||||
|     decays the variable. Note that this is different from adding |  | ||||||
|     L2 regularization on the variables to the loss. Decoupling the weight decay |  | ||||||
|     from other hyperparameters (in particular the learning rate) simplifies |  | ||||||
|     hyperparameter search. |  | ||||||
|  |  | ||||||
|     For further information see the documentation of the SGD Optimizer. |  | ||||||
|  |  | ||||||
|     This optimizer can also be instantiated as |  | ||||||
|     ```python |  | ||||||
|     extend_with_decoupled_weight_decay(tf.keras.optimizers.SGD, |  | ||||||
|                                        weight_decay=weight_decay) |  | ||||||
|     ``` |  | ||||||
|  |  | ||||||
|     Note: when applying a decay to the learning rate, be sure to manually apply |  | ||||||
|     the decay to the `weight_decay` as well. For example: |  | ||||||
|  |  | ||||||
|     ```python |  | ||||||
|     step = tf.Variable(0, trainable=False) |  | ||||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( |  | ||||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) |  | ||||||
|     # lr and wd can be a function or a tensor |  | ||||||
|     lr = 1e-1 * schedule(step) |  | ||||||
|     wd = lambda: 1e-4 * schedule(step) |  | ||||||
|  |  | ||||||
|     # ... |  | ||||||
|  |  | ||||||
|     optimizer = tfa.optimizers.SGDW( |  | ||||||
|         learning_rate=lr, weight_decay=wd, momentum=0.9) |  | ||||||
|     ``` |  | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     def __init__(self, |  | ||||||
|                  weight_decay, |  | ||||||
|                  learning_rate=0.001, |  | ||||||
|                  momentum=0.0, |  | ||||||
|                  nesterov=False, |  | ||||||
|                  name='SGDW', |  | ||||||
|                  **kwargs): |  | ||||||
|         """Construct a new SGDW optimizer. |  | ||||||
|  |  | ||||||
|         For further information see the documentation of the SGD Optimizer. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             learning_rate: float hyperparameter >= 0. Learning rate. |  | ||||||
|             momentum: float hyperparameter >= 0 that accelerates SGD in the |  | ||||||
|                 relevant direction and dampens oscillations. |  | ||||||
|             nesterov: boolean. Whether to apply Nesterov momentum. |  | ||||||
|             name: Optional name prefix for the operations created when applying |  | ||||||
|                 gradients.  Defaults to 'SGD'. |  | ||||||
|             **kwargs: keyword arguments. Allowed to be {`clipnorm`, |  | ||||||
|                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by |  | ||||||
|                 norm; `clipvalue` is clip gradients by value, `decay` is |  | ||||||
|                 included for backward compatibility to allow time inverse decay |  | ||||||
|                 of learning rate. `lr` is included for backward compatibility, |  | ||||||
|                 recommended to use `learning_rate` instead. |  | ||||||
|         """ |  | ||||||
|         super(SGDW, self).__init__( |  | ||||||
|             weight_decay, |  | ||||||
|             learning_rate=learning_rate, |  | ||||||
|             momentum=momentum, |  | ||||||
|             nesterov=nesterov, |  | ||||||
|             name=name, |  | ||||||
|             **kwargs) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): |  | ||||||
|     """Optimizer that implements the Adam algorithm with weight decay. |  | ||||||
|  |  | ||||||
|     This is an implementation of the AdamW optimizer described in "Decoupled |  | ||||||
|     Weight Decay Regularization" by Loshchilov & Hutter |  | ||||||
|     (https://arxiv.org/abs/1711.05101) |  | ||||||
|     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). |  | ||||||
|  |  | ||||||
|     It computes the update step of `tf.keras.optimizers.Adam` and additionally |  | ||||||
|     decays the variable. Note that this is different from adding L2 |  | ||||||
|     regularization on the variables to the loss: it regularizes variables with |  | ||||||
|     large gradients more than L2 regularization would, which was shown to yield |  | ||||||
|     better training loss and generalization error in the paper above. |  | ||||||
|  |  | ||||||
|     For further information see the documentation of the Adam Optimizer. |  | ||||||
|  |  | ||||||
|     This optimizer can also be instantiated as |  | ||||||
|     ```python |  | ||||||
|     extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam, |  | ||||||
|                                        weight_decay=weight_decay) |  | ||||||
|     ``` |  | ||||||
|  |  | ||||||
|     Note: when applying a decay to the learning rate, be sure to manually apply |  | ||||||
|     the decay to the `weight_decay` as well. For example: |  | ||||||
|  |  | ||||||
|     ```python |  | ||||||
|     step = tf.Variable(0, trainable=False) |  | ||||||
|     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( |  | ||||||
|         [10000, 15000], [1e-0, 1e-1, 1e-2]) |  | ||||||
|     # lr and wd can be a function or a tensor |  | ||||||
|     lr = 1e-1 * schedule(step) |  | ||||||
|     wd = lambda: 1e-4 * schedule(step) |  | ||||||
|  |  | ||||||
|     # ... |  | ||||||
|  |  | ||||||
|     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) |  | ||||||
|     ``` |  | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     def __init__(self, |  | ||||||
|                  weight_decay, |  | ||||||
|                  learning_rate=0.001, |  | ||||||
|                  beta_1=0.9, |  | ||||||
|                  beta_2=0.999, |  | ||||||
|                  epsilon=1e-07, |  | ||||||
|                  amsgrad=False, |  | ||||||
|                  name="AdamW", |  | ||||||
|                  **kwargs): |  | ||||||
|         """Construct a new AdamW optimizer. |  | ||||||
|  |  | ||||||
|         For further information see the documentation of the Adam Optimizer. |  | ||||||
|  |  | ||||||
|         Args: |  | ||||||
|             weight_decay: A Tensor or a floating point value. The weight decay. |  | ||||||
|             learning_rate: A Tensor or a floating point value. The learning |  | ||||||
|                 rate. |  | ||||||
|             beta_1: A float value or a constant float tensor. The exponential |  | ||||||
|                 decay rate for the 1st moment estimates. |  | ||||||
|             beta_2: A float value or a constant float tensor. The exponential |  | ||||||
|                 decay rate for the 2nd moment estimates. |  | ||||||
|             epsilon: A small constant for numerical stability. This epsilon is |  | ||||||
|                 "epsilon hat" in the Kingma and Ba paper (in the formula just |  | ||||||
|                 before Section 2.1), not the epsilon in Algorithm 1 of the |  | ||||||
|                 paper. |  | ||||||
|             amsgrad: boolean. Whether to apply AMSGrad variant of this |  | ||||||
|                 algorithm from the paper "On the Convergence of Adam and |  | ||||||
|                 beyond". |  | ||||||
|             name: Optional name for the operations created when applying |  | ||||||
|                 gradients. Defaults to "AdamW". |  | ||||||
|             **kwargs: keyword arguments. Allowed to be {`clipnorm`, |  | ||||||
|                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by |  | ||||||
|                 norm; `clipvalue` is clip gradients by value, `decay` is |  | ||||||
|                 included for backward compatibility to allow time inverse decay |  | ||||||
|                 of learning rate. `lr` is included for backward compatibility, |  | ||||||
|                 recommended to use `learning_rate` instead. |  | ||||||
|         """ |  | ||||||
|         super(AdamW, self).__init__( |  | ||||||
|             weight_decay, |  | ||||||
|             learning_rate=learning_rate, |  | ||||||
|             beta_1=beta_1, |  | ||||||
|             beta_2=beta_2, |  | ||||||
|             epsilon=epsilon, |  | ||||||
|             amsgrad=amsgrad, |  | ||||||
|             name=name, |  | ||||||
|             **kwargs) |  | ||||||
		Reference in New Issue
	
	Block a user