Update sync codes
This commit is contained in:
parent
c82c7e9f3f
commit
cd253112ee
1
.github/workflows/basic_test.yml
vendored
1
.github/workflows/basic_test.yml
vendored
@ -48,4 +48,5 @@ jobs:
|
|||||||
ls
|
ls
|
||||||
python --version
|
python --version
|
||||||
python -m pytest ./tests/test_basic_space.py -s
|
python -m pytest ./tests/test_basic_space.py -s
|
||||||
|
python -m pytest ./tests/test_synthetic.py -s
|
||||||
shell: bash
|
shell: bash
|
||||||
|
@ -3,3 +3,5 @@
|
|||||||
##################################################
|
##################################################
|
||||||
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||||
from .SearchDatasetWrap import SearchDataset
|
from .SearchDatasetWrap import SearchDataset
|
||||||
|
|
||||||
|
from .synthetic_adaptive_environment import SynAdaptiveEnv
|
||||||
|
84
lib/datasets/synthetic_adaptive_environment.py
Normal file
84
lib/datasets/synthetic_adaptive_environment.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
#####################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||||
|
#####################################################
|
||||||
|
import numpy as np
|
||||||
|
from typing import Optional
|
||||||
|
import torch.utils.data as data
|
||||||
|
|
||||||
|
|
||||||
|
class SynAdaptiveEnv(data.Dataset):
|
||||||
|
"""The synethtic dataset for adaptive environment."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
max_num_phase: int = 100,
|
||||||
|
interval: float = 0.1,
|
||||||
|
max_scale: float = 4,
|
||||||
|
offset_scale: float = 1.5,
|
||||||
|
mode: Optional[str] = None,
|
||||||
|
):
|
||||||
|
|
||||||
|
self._max_num_phase = max_num_phase
|
||||||
|
self._interval = interval
|
||||||
|
|
||||||
|
self._times = np.arange(0, np.pi * self._max_num_phase, self._interval)
|
||||||
|
xmin, xmax = self._times.min(), self._times.max()
|
||||||
|
self._inputs = []
|
||||||
|
self._total_num = len(self._times)
|
||||||
|
for i in range(self._total_num):
|
||||||
|
scale = (i + 1.0) / self._total_num * max_scale
|
||||||
|
sin_scale = (i + 1.0) / self._total_num * 0.7
|
||||||
|
sin_scale = -4 * (sin_scale - 0.5) ** 2 + 1
|
||||||
|
# scale = -(self._times[i] - (xmin - xmax) / 2) + max_scale
|
||||||
|
self._inputs.append(
|
||||||
|
np.sin(self._times[i] * sin_scale) * (offset_scale - scale)
|
||||||
|
)
|
||||||
|
self._inputs = np.array(self._inputs)
|
||||||
|
# Training Set 60%
|
||||||
|
num_of_train = int(self._total_num * 0.6)
|
||||||
|
# Validation Set 20%
|
||||||
|
num_of_valid = int(self._total_num * 0.2)
|
||||||
|
# Test Set 20%
|
||||||
|
num_of_set = self._total_num - num_of_train - num_of_valid
|
||||||
|
all_indexes = list(range(self._total_num))
|
||||||
|
if mode is None:
|
||||||
|
self._indexes = all_indexes
|
||||||
|
elif mode.lower() in ("train", "training"):
|
||||||
|
self._indexes = all_indexes[:num_of_train]
|
||||||
|
elif mode.lower() in ("valid", "validation"):
|
||||||
|
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
|
||||||
|
elif mode.lower() in ("test", "testing"):
|
||||||
|
self._indexes = all_indexes[num_of_train + num_of_valid :]
|
||||||
|
else:
|
||||||
|
raise ValueError("Unkonwn mode of {:}".format(mode))
|
||||||
|
# transformation function
|
||||||
|
self._transform = None
|
||||||
|
|
||||||
|
def set_transform(self, fn):
|
||||||
|
self._transform = fn
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
self._iter_num = 0
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
if self._iter_num >= len(self):
|
||||||
|
raise StopIteration
|
||||||
|
self._iter_num += 1
|
||||||
|
return self.__getitem__(self._iter_num - 1)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||||
|
index = self._indexes[index]
|
||||||
|
value = float(self._inputs[index])
|
||||||
|
if self._transform is not None:
|
||||||
|
value = self._transform(value)
|
||||||
|
return index, float(self._times[index]), value
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self._indexes)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return "{name}({cur_num:}/{total} elements)".format(
|
||||||
|
name=self.__class__.__name__, cur_num=self._total_num, total=len(self)
|
||||||
|
)
|
@ -5,17 +5,39 @@
|
|||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
"id": "filled-multiple",
|
"id": "filled-multiple",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n",
|
||||||
|
"The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"#\n",
|
"import os, sys\n",
|
||||||
"# %matplotlib notebook\n",
|
"import torch\n",
|
||||||
"from pathlib import Path\n",
|
"from pathlib import Path\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import matplotlib\n",
|
"import matplotlib\n",
|
||||||
"from matplotlib import cm\n",
|
"from matplotlib import cm\n",
|
||||||
"matplotlib.use(\"agg\")\n",
|
"matplotlib.use(\"agg\")\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"import matplotlib.ticker as ticker"
|
"import matplotlib.ticker as ticker\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n",
|
||||||
|
"root_dir = (Path(__file__).parent / \"..\").resolve()\n",
|
||||||
|
"lib_dir = (root_dir / \"lib\").resolve()\n",
|
||||||
|
"print(\"The root path: {:}\".format(root_dir))\n",
|
||||||
|
"print(\"The library path: {:}\".format(lib_dir))\n",
|
||||||
|
"assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n",
|
||||||
|
"if str(lib_dir) not in sys.path:\n",
|
||||||
|
" sys.path.insert(0, str(lib_dir))\n",
|
||||||
|
"\n",
|
||||||
|
"from datasets import SynAdaptiveEnv\n",
|
||||||
|
"from xlayers.super_core import SuperMLPv1"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -25,49 +47,97 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"def optimize_fn(xs, ys, test_sets):\n",
|
||||||
|
" xs = torch.FloatTensor(xs).view(-1, 1)\n",
|
||||||
|
" ys = torch.FloatTensor(ys).view(-1, 1)\n",
|
||||||
|
" \n",
|
||||||
|
" model = SuperMLPv1(1, 10, 1, torch.nn.ReLU)\n",
|
||||||
|
" optimizer = torch.optim.Adam(\n",
|
||||||
|
" model.parameters(),\n",
|
||||||
|
" lr=0.01, weight_decay=1e-4, amsgrad=True\n",
|
||||||
|
" )\n",
|
||||||
|
" for _iter in range(100):\n",
|
||||||
|
" preds = model(ys)\n",
|
||||||
|
"\n",
|
||||||
|
" optimizer.zero_grad()\n",
|
||||||
|
" loss = torch.nn.functional.mse_loss(preds, ys)\n",
|
||||||
|
" loss.backward()\n",
|
||||||
|
" optimizer.step()\n",
|
||||||
|
" \n",
|
||||||
|
" with torch.no_grad():\n",
|
||||||
|
" answers = []\n",
|
||||||
|
" for test_set in test_sets:\n",
|
||||||
|
" test_set = torch.FloatTensor(test_set).view(-1, 1)\n",
|
||||||
|
" preds = model(test_set).view(-1).numpy()\n",
|
||||||
|
" answers.append(preds.tolist())\n",
|
||||||
|
" return answers\n",
|
||||||
|
"\n",
|
||||||
|
"def f(x):\n",
|
||||||
|
" return np.cos( 0.5 * x + 0.)\n",
|
||||||
|
"\n",
|
||||||
|
"def get_data(mode):\n",
|
||||||
|
" dataset = SynAdaptiveEnv(mode=mode)\n",
|
||||||
|
" times, xs, ys = [], [], []\n",
|
||||||
|
" for i, (_, t, x) in enumerate(dataset):\n",
|
||||||
|
" times.append(t)\n",
|
||||||
|
" xs.append(x)\n",
|
||||||
|
" dataset.set_transform(f)\n",
|
||||||
|
" for i, (_, _, y) in enumerate(dataset):\n",
|
||||||
|
" ys.append(y)\n",
|
||||||
|
" return times, xs, ys\n",
|
||||||
|
"\n",
|
||||||
"def visualize_syn(save_path):\n",
|
"def visualize_syn(save_path):\n",
|
||||||
" save_dir = (save_path / '..').resolve()\n",
|
" save_dir = (save_path / '..').resolve()\n",
|
||||||
" save_dir.mkdir(parents=True, exist_ok=True)\n",
|
" save_dir.mkdir(parents=True, exist_ok=True)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" dpi, width, height = 50, 2000, 1000\n",
|
" dpi, width, height = 40, 2000, 900\n",
|
||||||
" figsize = width / float(dpi), height / float(dpi)\n",
|
" figsize = width / float(dpi), height / float(dpi)\n",
|
||||||
" LabelSize, font_gap = 30, 4\n",
|
" LabelSize, LegendFontsize, font_gap = 40, 40, 5\n",
|
||||||
" \n",
|
" \n",
|
||||||
" fig = plt.figure(figsize=figsize)\n",
|
" fig = plt.figure(figsize=figsize)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" times = np.arange(0, np.pi * 100, 0.1)\n",
|
" times, xs, ys = get_data(None)\n",
|
||||||
" num = len(times)\n",
|
" \n",
|
||||||
" x = []\n",
|
" def draw_ax(cur_ax, xaxis, yaxis, xlabel, ylabel,\n",
|
||||||
" for i in range(num):\n",
|
" alpha=0.1, color='k', linestyle='-', legend=None, plot_only=False):\n",
|
||||||
" scale = (i + 1.) / num * 4\n",
|
" if legend is not None:\n",
|
||||||
" value = times[i] * scale\n",
|
" cur_ax.plot(xaxis[:1], yaxis[:1], color=color, label=legend)\n",
|
||||||
" x.append(np.sin(value) * (1.3 - scale))\n",
|
" cur_ax.plot(xaxis, yaxis, color=color, linestyle=linestyle, alpha=alpha, label=None)\n",
|
||||||
" x = np.array(x)\n",
|
" if not plot_only:\n",
|
||||||
" y = np.cos( x * x - 0.3 * x )\n",
|
" cur_ax.set_xlabel(xlabel, fontsize=LabelSize)\n",
|
||||||
|
" cur_ax.set_ylabel(ylabel, rotation=0, fontsize=LabelSize)\n",
|
||||||
|
" for tick in cur_ax.xaxis.get_major_ticks():\n",
|
||||||
|
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
||||||
|
" tick.label.set_rotation(10)\n",
|
||||||
|
" for tick in cur_ax.yaxis.get_major_ticks():\n",
|
||||||
|
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" cur_ax = fig.add_subplot(2, 1, 1)\n",
|
" cur_ax = fig.add_subplot(2, 1, 1)\n",
|
||||||
" cur_ax.plot(times, x)\n",
|
" draw_ax(cur_ax, times, xs, \"time\", \"x\", alpha=1.0, legend=None)\n",
|
||||||
" cur_ax.set_xlabel(\"time\", fontsize=LabelSize)\n",
|
"\n",
|
||||||
" cur_ax.set_ylabel(\"x\", fontsize=LabelSize)\n",
|
|
||||||
" for tick in cur_ax.xaxis.get_major_ticks():\n",
|
|
||||||
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
|
||||||
" tick.label.set_rotation(30)\n",
|
|
||||||
" for tick in cur_ax.yaxis.get_major_ticks():\n",
|
|
||||||
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
|
||||||
" \n",
|
|
||||||
" \n",
|
|
||||||
" cur_ax = fig.add_subplot(2, 1, 2)\n",
|
" cur_ax = fig.add_subplot(2, 1, 2)\n",
|
||||||
" cur_ax.plot(times, y)\n",
|
" draw_ax(cur_ax, times, ys, \"time\", \"y\", alpha=0.1, legend=\"ground truth\")\n",
|
||||||
" cur_ax.set_xlabel(\"time\", fontsize=LabelSize)\n",
|
" \n",
|
||||||
" cur_ax.set_ylabel(\"f(x)\", fontsize=LabelSize)\n",
|
" train_times, train_xs, train_ys = get_data(\"train\")\n",
|
||||||
" for tick in cur_ax.xaxis.get_major_ticks():\n",
|
" draw_ax(cur_ax, train_times, train_ys, None, None, alpha=1.0, color='r', legend=None, plot_only=True)\n",
|
||||||
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
" \n",
|
||||||
" tick.label.set_rotation(30)\n",
|
" valid_times, valid_xs, valid_ys = get_data(\"valid\")\n",
|
||||||
" for tick in cur_ax.yaxis.get_major_ticks():\n",
|
" draw_ax(cur_ax, valid_times, valid_ys, None, None, alpha=1.0, color='g', legend=None, plot_only=True)\n",
|
||||||
" tick.label.set_fontsize(LabelSize - font_gap)\n",
|
" \n",
|
||||||
" \n",
|
" test_times, test_xs, test_ys = get_data(\"test\")\n",
|
||||||
" # fig.tight_layout()\n",
|
" draw_ax(cur_ax, test_times, test_ys, None, None, alpha=1.0, color='b', legend=None, plot_only=True)\n",
|
||||||
" # plt.subplots_adjust(wspace=0.05)#, hspace=0.4)\n",
|
" \n",
|
||||||
|
" # optimize MLP models\n",
|
||||||
|
" [train_preds, valid_preds, test_preds] = optimize_fn(train_xs, train_ys, [train_xs, valid_xs, test_xs])\n",
|
||||||
|
" draw_ax(cur_ax, train_times, train_preds, None, None,\n",
|
||||||
|
" alpha=1.0, linestyle='--', color='r', legend=\"MLP\", plot_only=True)\n",
|
||||||
|
" draw_ax(cur_ax, valid_times, valid_preds, None, None,\n",
|
||||||
|
" alpha=1.0, linestyle='--', color='g', legend=None, plot_only=True)\n",
|
||||||
|
" draw_ax(cur_ax, test_times, test_preds, None, None,\n",
|
||||||
|
" alpha=1.0, linestyle='--', color='b', legend=None, plot_only=True)\n",
|
||||||
|
"\n",
|
||||||
|
" plt.legend(loc=1, fontsize=LegendFontsize)\n",
|
||||||
|
"\n",
|
||||||
" fig.savefig(save_path, dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n",
|
" fig.savefig(save_path, dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n",
|
||||||
" plt.close(\"all\")\n",
|
" plt.close(\"all\")\n",
|
||||||
" # plt.show()"
|
" # plt.show()"
|
||||||
@ -94,14 +164,6 @@
|
|||||||
"print('The Desktop is at: {:}'.format(desktop_dir))\n",
|
"print('The Desktop is at: {:}'.format(desktop_dir))\n",
|
||||||
"visualize_syn(desktop_dir / 'tot-synthetic-v0.pdf')"
|
"visualize_syn(desktop_dir / 'tot-synthetic-v0.pdf')"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "romantic-ordinance",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
27
tests/test_synthetic.py
Normal file
27
tests/test_synthetic.py
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#####################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||||
|
#####################################################
|
||||||
|
# pytest tests/test_synthetic.py -s #
|
||||||
|
#####################################################
|
||||||
|
import sys, random
|
||||||
|
import unittest
|
||||||
|
import pytest
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
|
||||||
|
print("library path: {:}".format(lib_dir))
|
||||||
|
if str(lib_dir) not in sys.path:
|
||||||
|
sys.path.insert(0, str(lib_dir))
|
||||||
|
|
||||||
|
from datasets import SynAdaptiveEnv
|
||||||
|
|
||||||
|
|
||||||
|
class TestSynAdaptiveEnv(unittest.TestCase):
|
||||||
|
"""Test the synethtic adaptive environment."""
|
||||||
|
|
||||||
|
def test_simple(self):
|
||||||
|
dataset = SynAdaptiveEnv()
|
||||||
|
for i, (idx, t, x) in enumerate(dataset):
|
||||||
|
assert i == idx, "First loop: {:} vs {:}".format(i, idx)
|
||||||
|
for i, (idx, t, x) in enumerate(dataset):
|
||||||
|
assert i == idx, "Second loop: {:} vs {:}".format(i, idx)
|
Loading…
Reference in New Issue
Block a user