Update sync codes
This commit is contained in:
		
							
								
								
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/basic_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -48,4 +48,5 @@ jobs: | ||||
|           ls | ||||
|           python --version | ||||
|           python -m pytest ./tests/test_basic_space.py -s | ||||
|           python -m pytest ./tests/test_synthetic.py -s | ||||
|         shell: bash | ||||
|   | ||||
| @@ -3,3 +3,5 @@ | ||||
| ################################################## | ||||
| from .get_dataset_with_transform import get_datasets, get_nas_search_loaders | ||||
| from .SearchDatasetWrap import SearchDataset | ||||
|  | ||||
| from .synthetic_adaptive_environment import SynAdaptiveEnv | ||||
|   | ||||
							
								
								
									
										84
									
								
								lib/datasets/synthetic_adaptive_environment.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								lib/datasets/synthetic_adaptive_environment.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,84 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import numpy as np | ||||
| from typing import Optional | ||||
| import torch.utils.data as data | ||||
|  | ||||
|  | ||||
| class SynAdaptiveEnv(data.Dataset): | ||||
|     """The synethtic dataset for adaptive environment.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         max_num_phase: int = 100, | ||||
|         interval: float = 0.1, | ||||
|         max_scale: float = 4, | ||||
|         offset_scale: float = 1.5, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|  | ||||
|         self._max_num_phase = max_num_phase | ||||
|         self._interval = interval | ||||
|  | ||||
|         self._times = np.arange(0, np.pi * self._max_num_phase, self._interval) | ||||
|         xmin, xmax = self._times.min(), self._times.max() | ||||
|         self._inputs = [] | ||||
|         self._total_num = len(self._times) | ||||
|         for i in range(self._total_num): | ||||
|             scale = (i + 1.0) / self._total_num * max_scale | ||||
|             sin_scale = (i + 1.0) / self._total_num * 0.7 | ||||
|             sin_scale = -4 * (sin_scale - 0.5) ** 2 + 1 | ||||
|             # scale = -(self._times[i] - (xmin - xmax) / 2) + max_scale | ||||
|             self._inputs.append( | ||||
|                 np.sin(self._times[i] * sin_scale) * (offset_scale - scale) | ||||
|             ) | ||||
|         self._inputs = np.array(self._inputs) | ||||
|         # Training Set 60% | ||||
|         num_of_train = int(self._total_num * 0.6) | ||||
|         # Validation Set 20% | ||||
|         num_of_valid = int(self._total_num * 0.2) | ||||
|         # Test Set 20% | ||||
|         num_of_set = self._total_num - num_of_train - num_of_valid | ||||
|         all_indexes = list(range(self._total_num)) | ||||
|         if mode is None: | ||||
|             self._indexes = all_indexes | ||||
|         elif mode.lower() in ("train", "training"): | ||||
|             self._indexes = all_indexes[:num_of_train] | ||||
|         elif mode.lower() in ("valid", "validation"): | ||||
|             self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid] | ||||
|         elif mode.lower() in ("test", "testing"): | ||||
|             self._indexes = all_indexes[num_of_train + num_of_valid :] | ||||
|         else: | ||||
|             raise ValueError("Unkonwn mode of {:}".format(mode)) | ||||
|         # transformation function | ||||
|         self._transform = None | ||||
|  | ||||
|     def set_transform(self, fn): | ||||
|         self._transform = fn | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
|  | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         value = float(self._inputs[index]) | ||||
|         if self._transform is not None: | ||||
|             value = self._transform(value) | ||||
|         return index, float(self._times[index]), value | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({cur_num:}/{total} elements)".format( | ||||
|             name=self.__class__.__name__, cur_num=self._total_num, total=len(self) | ||||
|         ) | ||||
| @@ -5,17 +5,39 @@ | ||||
|    "execution_count": 1, | ||||
|    "id": "filled-multiple", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n", | ||||
|       "The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "#\n", | ||||
|     "# %matplotlib notebook\n", | ||||
|     "import os, sys\n", | ||||
|     "import torch\n", | ||||
|     "from pathlib import Path\n", | ||||
|     "import numpy as np\n", | ||||
|     "import matplotlib\n", | ||||
|     "from matplotlib import cm\n", | ||||
|     "matplotlib.use(\"agg\")\n", | ||||
|     "import matplotlib.pyplot as plt\n", | ||||
|     "import matplotlib.ticker as ticker" | ||||
|     "import matplotlib.ticker as ticker\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n", | ||||
|     "root_dir = (Path(__file__).parent / \"..\").resolve()\n", | ||||
|     "lib_dir = (root_dir / \"lib\").resolve()\n", | ||||
|     "print(\"The root path: {:}\".format(root_dir))\n", | ||||
|     "print(\"The library path: {:}\".format(lib_dir))\n", | ||||
|     "assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n", | ||||
|     "if str(lib_dir) not in sys.path:\n", | ||||
|     "    sys.path.insert(0, str(lib_dir))\n", | ||||
|     "\n", | ||||
|     "from datasets import SynAdaptiveEnv\n", | ||||
|     "from xlayers.super_core import SuperMLPv1" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @@ -25,49 +47,97 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def optimize_fn(xs, ys, test_sets):\n", | ||||
|     "    xs = torch.FloatTensor(xs).view(-1, 1)\n", | ||||
|     "    ys = torch.FloatTensor(ys).view(-1, 1)\n", | ||||
|     "    \n", | ||||
|     "    model = SuperMLPv1(1, 10, 1, torch.nn.ReLU)\n", | ||||
|     "    optimizer = torch.optim.Adam(\n", | ||||
|     "        model.parameters(),\n", | ||||
|     "        lr=0.01, weight_decay=1e-4, amsgrad=True\n", | ||||
|     "    )\n", | ||||
|     "    for _iter in range(100):\n", | ||||
|     "        preds = model(ys)\n", | ||||
|     "\n", | ||||
|     "        optimizer.zero_grad()\n", | ||||
|     "        loss = torch.nn.functional.mse_loss(preds, ys)\n", | ||||
|     "        loss.backward()\n", | ||||
|     "        optimizer.step()\n", | ||||
|     "        \n", | ||||
|     "    with torch.no_grad():\n", | ||||
|     "        answers = []\n", | ||||
|     "        for test_set in test_sets:\n", | ||||
|     "            test_set = torch.FloatTensor(test_set).view(-1, 1)\n", | ||||
|     "            preds = model(test_set).view(-1).numpy()\n", | ||||
|     "            answers.append(preds.tolist())\n", | ||||
|     "    return answers\n", | ||||
|     "\n", | ||||
|     "def f(x):\n", | ||||
|     "    return np.cos( 0.5 * x + 0.)\n", | ||||
|     "\n", | ||||
|     "def get_data(mode):\n", | ||||
|     "    dataset = SynAdaptiveEnv(mode=mode)\n", | ||||
|     "    times, xs, ys = [], [], []\n", | ||||
|     "    for i, (_, t, x) in enumerate(dataset):\n", | ||||
|     "        times.append(t)\n", | ||||
|     "        xs.append(x)\n", | ||||
|     "    dataset.set_transform(f)\n", | ||||
|     "    for i, (_, _, y) in enumerate(dataset):\n", | ||||
|     "        ys.append(y)\n", | ||||
|     "    return times, xs, ys\n", | ||||
|     "\n", | ||||
|     "def visualize_syn(save_path):\n", | ||||
|     "    save_dir = (save_path / '..').resolve()\n", | ||||
|     "    save_dir.mkdir(parents=True, exist_ok=True)\n", | ||||
|     "    \n", | ||||
|     "    dpi, width, height = 50, 2000, 1000\n", | ||||
|     "    dpi, width, height = 40, 2000, 900\n", | ||||
|     "    figsize = width / float(dpi), height / float(dpi)\n", | ||||
|     "    LabelSize, font_gap = 30, 4\n", | ||||
|     "    LabelSize, LegendFontsize, font_gap = 40, 40, 5\n", | ||||
|     "    \n", | ||||
|     "    fig = plt.figure(figsize=figsize)\n", | ||||
|     "    \n", | ||||
|     "    times = np.arange(0, np.pi * 100, 0.1)\n", | ||||
|     "    num = len(times)\n", | ||||
|     "    x = []\n", | ||||
|     "    for i in range(num):\n", | ||||
|     "        scale = (i + 1.) / num * 4\n", | ||||
|     "        value = times[i] * scale\n", | ||||
|     "        x.append(np.sin(value) * (1.3 - scale))\n", | ||||
|     "    x = np.array(x)\n", | ||||
|     "    y = np.cos( x * x - 0.3 * x )\n", | ||||
|     "    times, xs, ys = get_data(None)\n", | ||||
|     "    \n", | ||||
|     "    def draw_ax(cur_ax, xaxis, yaxis, xlabel, ylabel,\n", | ||||
|     "                alpha=0.1, color='k', linestyle='-', legend=None, plot_only=False):\n", | ||||
|     "        if legend is not None:\n", | ||||
|     "            cur_ax.plot(xaxis[:1], yaxis[:1], color=color, label=legend)\n", | ||||
|     "        cur_ax.plot(xaxis, yaxis, color=color, linestyle=linestyle, alpha=alpha, label=None)\n", | ||||
|     "        if not plot_only:\n", | ||||
|     "            cur_ax.set_xlabel(xlabel, fontsize=LabelSize)\n", | ||||
|     "            cur_ax.set_ylabel(ylabel, rotation=0, fontsize=LabelSize)\n", | ||||
|     "            for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "                tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "                tick.label.set_rotation(10)\n", | ||||
|     "            for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "                tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "    \n", | ||||
|     "    cur_ax = fig.add_subplot(2, 1, 1)\n", | ||||
|     "    cur_ax.plot(times, x)\n", | ||||
|     "    cur_ax.set_xlabel(\"time\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"x\", fontsize=LabelSize)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(30)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        \n", | ||||
|     "    \n", | ||||
|     "    draw_ax(cur_ax, times, xs, \"time\", \"x\", alpha=1.0, legend=None)\n", | ||||
|     "\n", | ||||
|     "    cur_ax = fig.add_subplot(2, 1, 2)\n", | ||||
|     "    cur_ax.plot(times, y)\n", | ||||
|     "    cur_ax.set_xlabel(\"time\", fontsize=LabelSize)\n", | ||||
|     "    cur_ax.set_ylabel(\"f(x)\", fontsize=LabelSize)\n", | ||||
|     "    for tick in cur_ax.xaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        tick.label.set_rotation(30)\n", | ||||
|     "    for tick in cur_ax.yaxis.get_major_ticks():\n", | ||||
|     "        tick.label.set_fontsize(LabelSize - font_gap)\n", | ||||
|     "        \n", | ||||
|     "    # fig.tight_layout()\n", | ||||
|     "    # plt.subplots_adjust(wspace=0.05)#, hspace=0.4)\n", | ||||
|     "    draw_ax(cur_ax, times, ys, \"time\", \"y\", alpha=0.1, legend=\"ground truth\")\n", | ||||
|     "    \n", | ||||
|     "    train_times, train_xs, train_ys = get_data(\"train\")\n", | ||||
|     "    draw_ax(cur_ax, train_times, train_ys, None, None, alpha=1.0, color='r', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "    valid_times, valid_xs, valid_ys = get_data(\"valid\")\n", | ||||
|     "    draw_ax(cur_ax, valid_times, valid_ys, None, None, alpha=1.0, color='g', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "    test_times, test_xs, test_ys = get_data(\"test\")\n", | ||||
|     "    draw_ax(cur_ax, test_times, test_ys, None, None, alpha=1.0, color='b', legend=None, plot_only=True)\n", | ||||
|     "    \n", | ||||
|     "    # optimize MLP models\n", | ||||
|     "    [train_preds, valid_preds, test_preds] = optimize_fn(train_xs, train_ys, [train_xs, valid_xs, test_xs])\n", | ||||
|     "    draw_ax(cur_ax, train_times, train_preds, None, None,\n", | ||||
|     "            alpha=1.0, linestyle='--', color='r', legend=\"MLP\", plot_only=True)\n", | ||||
|     "    draw_ax(cur_ax, valid_times, valid_preds, None, None,\n", | ||||
|     "            alpha=1.0, linestyle='--', color='g', legend=None, plot_only=True)\n", | ||||
|     "    draw_ax(cur_ax, test_times, test_preds, None, None,\n", | ||||
|     "            alpha=1.0, linestyle='--', color='b', legend=None, plot_only=True)\n", | ||||
|     "\n", | ||||
|     "    plt.legend(loc=1, fontsize=LegendFontsize)\n", | ||||
|     "\n", | ||||
|     "    fig.savefig(save_path, dpi=dpi, bbox_inches=\"tight\", format=\"pdf\")\n", | ||||
|     "    plt.close(\"all\")\n", | ||||
|     "    # plt.show()" | ||||
| @@ -94,14 +164,6 @@ | ||||
|     "print('The Desktop is at: {:}'.format(desktop_dir))\n", | ||||
|     "visualize_syn(desktop_dir / 'tot-synthetic-v0.pdf')" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "romantic-ordinance", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   | ||||
							
								
								
									
										27
									
								
								tests/test_synthetic.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								tests/test_synthetic.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,27 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest tests/test_synthetic.py -s                 # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from datasets import SynAdaptiveEnv | ||||
|  | ||||
|  | ||||
| class TestSynAdaptiveEnv(unittest.TestCase): | ||||
|     """Test the synethtic adaptive environment.""" | ||||
|  | ||||
|     def test_simple(self): | ||||
|         dataset = SynAdaptiveEnv() | ||||
|         for i, (idx, t, x) in enumerate(dataset): | ||||
|             assert i == idx, "First loop: {:} vs {:}".format(i, idx) | ||||
|         for i, (idx, t, x) in enumerate(dataset): | ||||
|             assert i == idx, "Second loop: {:} vs {:}".format(i, idx) | ||||
		Reference in New Issue
	
	Block a user