LFNA -> GMOA
This commit is contained in:
		| @@ -1,9 +1,10 @@ | ||||
| ##################################################### | ||||
| # Learning to Generate Model One Step Ahead         # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 --meta_batch 128 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128 | ||||
| # python exps/GMOA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128 | ||||
| ##################################################### | ||||
| import pdb, sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -33,7 +34,7 @@ from xautodl.models.xcore import get_model | ||||
| from xautodl.xlayers import super_core, trunc_normal_ | ||||
| 
 | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_meta_model import LFNA_Meta | ||||
| from lfna_meta_model import MetaModelV1 | ||||
| 
 | ||||
| 
 | ||||
| def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger): | ||||
| @@ -240,7 +241,7 @@ def main(args): | ||||
| 
 | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = trainval_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta( | ||||
|     meta_model = MetaModelV1( | ||||
|         shape_container, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
| @@ -270,179 +271,6 @@ def main(args): | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|     return | ||||
|     """ | ||||
|     optimizer = torch.optim.Adam( | ||||
|         meta_model.get_parameters(True, True, False),  # fix hypernet | ||||
|         lr=args.lr, | ||||
|         weight_decay=args.weight_decay, | ||||
|         amsgrad=True, | ||||
|     ) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[1, 2, 3, 4, 5], | ||||
|         gamma=0.2, | ||||
|     ) | ||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||
|     logger.log("The scheduler is\n{:}".format(lr_scheduler)) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(train_env_loader))) | ||||
| 
 | ||||
|     if logger.path("model").exists(): | ||||
|         ckp_data = torch.load(logger.path("model")) | ||||
|         base_model.load_state_dict(ckp_data["base_model"]) | ||||
|         meta_model.load_state_dict(ckp_data["meta_model"]) | ||||
|         optimizer.load_state_dict(ckp_data["optimizer"]) | ||||
|         lr_scheduler.load_state_dict(ckp_data["lr_scheduler"]) | ||||
|         last_success_epoch = ckp_data["last_success_epoch"] | ||||
|         start_epoch = ckp_data["iepoch"] + 1 | ||||
|         check_strs = [ | ||||
|             "epochs", | ||||
|             "env_version", | ||||
|             "hidden_dim", | ||||
|             "lr", | ||||
|             "layer_dim", | ||||
|             "time_dim", | ||||
|             "seq_length", | ||||
|         ] | ||||
|         for xstr in check_strs: | ||||
|             cx = getattr(args, xstr) | ||||
|             px = getattr(ckp_data["args"], xstr) | ||||
|             assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps) | ||||
|         success, _ = meta_model.save_best(ckp_data["cur_score"]) | ||||
|         logger.log("Load ckp from {:}".format(logger.path("model"))) | ||||
|         if success: | ||||
|             logger.log( | ||||
|                 "Re-save the best model with score={:}".format(ckp_data["cur_score"]) | ||||
|             ) | ||||
|     else: | ||||
|         start_epoch, last_success_epoch = 0, 0 | ||||
| 
 | ||||
|     # LFNA meta-train | ||||
|     meta_model.set_best_dir(logger.path(None) / "checkpoint") | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(start_epoch, args.epochs): | ||||
| 
 | ||||
|         head_str = "[{:}] [{:04d}/{:04d}] ".format( | ||||
|             time_string(), iepoch, args.epochs | ||||
|         ) + "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
| 
 | ||||
|         loss_meter = epoch_train( | ||||
|             train_env_loader, | ||||
|             meta_model, | ||||
|             base_model, | ||||
|             optimizer, | ||||
|             criterion, | ||||
|             args.device, | ||||
|             logger, | ||||
|         ) | ||||
| 
 | ||||
|         valid_loss_meter = epoch_evaluate( | ||||
|             valid_env_loader, meta_model, base_model, criterion, args.device, logger | ||||
|         ) | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format( | ||||
|                 meter=loss_meter | ||||
|             ) | ||||
|             + " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter) | ||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||
|             + "  :: last-success={:}".format(last_success_epoch) | ||||
|         ) | ||||
|         success, best_score = meta_model.save_best(-loss_meter.avg) | ||||
|         if success: | ||||
|             logger.log("Achieve the best with best-score = {:.5f}".format(best_score)) | ||||
|             last_success_epoch = iepoch | ||||
|             save_checkpoint( | ||||
|                 { | ||||
|                     "meta_model": meta_model.state_dict(), | ||||
|                     "base_model": base_model.state_dict(), | ||||
|                     "optimizer": optimizer.state_dict(), | ||||
|                     "lr_scheduler": lr_scheduler.state_dict(), | ||||
|                     "last_success_epoch": last_success_epoch, | ||||
|                     "cur_score": -loss_meter.avg, | ||||
|                     "iepoch": iepoch, | ||||
|                     "args": args, | ||||
|                 }, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh: | ||||
|             if lr_scheduler.last_epoch > 4: | ||||
|                 logger.log("Early stop at {:}".format(iepoch)) | ||||
|                 break | ||||
|             else: | ||||
|                 last_success_epoch = iepoch | ||||
|                 lr_scheduler.step() | ||||
|                 logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch)) | ||||
| 
 | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
| 
 | ||||
|     # meta-test | ||||
|     meta_model.load_best() | ||||
|     eval_env = env_info["dynamic_env"] | ||||
|     for idx in range(args.seq_length, len(eval_env)): | ||||
|         # build-timestamp | ||||
|         future_time = env_info["{:}-timestamp".format(idx)].item() | ||||
|         time_seqs = [] | ||||
|         for iseq in range(args.seq_length): | ||||
|             time_seqs.append(future_time - iseq * eval_env.time_interval) | ||||
|         time_seqs.reverse() | ||||
|         with torch.no_grad(): | ||||
|             meta_model.eval() | ||||
|             base_model.eval() | ||||
|             time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device) | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|             # evaluation | ||||
|             future_x = env_info["{:}-x".format(idx)].to(args.device) | ||||
|             future_y = env_info["{:}-y".format(idx)].to(args.device) | ||||
|             future_y_hat = base_model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|             logger.log( | ||||
|                 "meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|             ) | ||||
| 
 | ||||
|         # creating the new meta-time-embedding | ||||
|         distance = meta_model.get_closest_meta_distance(future_time) | ||||
|         if distance < eval_env.time_interval: | ||||
|             continue | ||||
|         # | ||||
|         new_param = meta_model.create_meta_embed() | ||||
|         optimizer = torch.optim.Adam( | ||||
|             [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True | ||||
|         ) | ||||
|         meta_model.replace_append_learnt( | ||||
|             torch.Tensor([future_time]).to(args.device), new_param | ||||
|         ) | ||||
|         meta_model.eval() | ||||
|         base_model.train() | ||||
|         for iepoch in range(args.refine_epochs): | ||||
|             optimizer.zero_grad() | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
|             future_y_hat = base_model.forward_with_container(future_x, future_container) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|             future_loss.backward() | ||||
|             optimizer.step() | ||||
|         logger.log( | ||||
|             "post-meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()) | ||||
|         ) | ||||
|         with torch.no_grad(): | ||||
|             meta_model.replace_append_learnt(None, None) | ||||
|             meta_model.append_fixed(torch.Tensor([future_time]), new_param) | ||||
| 
 | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|     """ | ||||
| 
 | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
| @@ -513,7 +341,7 @@ if __name__ == "__main__": | ||||
|         help="The learning rate for the optimizer, during refine", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--refine_epochs", type=int, default=50, help="The final refine #epochs." | ||||
|         "--refine_epochs", type=int, default=100, help="The final refine #epochs." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
| @@ -10,8 +10,8 @@ from xautodl.xlayers import trunc_normal_ | ||||
| from xautodl.models.xcore import get_model | ||||
| 
 | ||||
| 
 | ||||
| class LFNA_Meta(super_core.SuperModule): | ||||
|     """Learning to Forecast Neural Adaptation (Meta Model Design).""" | ||||
| class MetaModelV1(super_core.SuperModule): | ||||
|     """Learning to Generate Models One Step Ahead (Meta Model Design).""" | ||||
| 
 | ||||
|     def __init__( | ||||
|         self, | ||||
		Reference in New Issue
	
	Block a user