Add more algorithms
This commit is contained in:
		
							
								
								
									
										1
									
								
								lib/xvision/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								lib/xvision/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| from .affine_utils import normalize_points, denormalize_points | ||||
							
								
								
									
										132
									
								
								lib/xvision/affine_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										132
									
								
								lib/xvision/affine_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,132 @@ | ||||
| # Copyright (c) Facebook, Inc. and its affiliates. | ||||
| # All rights reserved. | ||||
| # | ||||
| # This source code is licensed under the license found in the | ||||
| # LICENSE file in the root directory of this source tree. | ||||
| # | ||||
| # | ||||
| # functions for affine transformation | ||||
| import math, torch | ||||
| import numpy as np | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| def identity2affine(full=False): | ||||
|   if not full: | ||||
|     parameters = torch.zeros((2,3)) | ||||
|     parameters[0, 0] = parameters[1, 1] = 1 | ||||
|   else: | ||||
|     parameters = torch.zeros((3,3)) | ||||
|     parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1 | ||||
|   return parameters | ||||
|  | ||||
| def normalize_L(x, L): | ||||
|   return -1. + 2. * x / (L-1) | ||||
|  | ||||
| def denormalize_L(x, L): | ||||
|   return (x + 1.0) / 2.0 * (L-1) | ||||
|  | ||||
| def crop2affine(crop_box, W, H): | ||||
|   assert len(crop_box) == 4, 'Invalid crop-box : {:}'.format(crop_box) | ||||
|   parameters = torch.zeros(3,3) | ||||
|   x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H) | ||||
|   x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H) | ||||
|   parameters[0,0] = (x2-x1)/2 | ||||
|   parameters[0,2] = (x2+x1)/2 | ||||
|  | ||||
|   parameters[1,1] = (y2-y1)/2 | ||||
|   parameters[1,2] = (y2+y1)/2 | ||||
|   parameters[2,2] = 1 | ||||
|   return parameters | ||||
|  | ||||
| def scale2affine(scalex, scaley): | ||||
|   parameters = torch.zeros(3,3) | ||||
|   parameters[0,0] = scalex | ||||
|   parameters[1,1] = scaley | ||||
|   parameters[2,2] = 1 | ||||
|   return parameters | ||||
|   | ||||
| def offset2affine(offx, offy): | ||||
|   parameters = torch.zeros(3,3) | ||||
|   parameters[0,0] = parameters[1,1] = parameters[2,2] = 1 | ||||
|   parameters[0,2] = offx | ||||
|   parameters[1,2] = offy | ||||
|   return parameters | ||||
|  | ||||
| def horizontalmirror2affine(): | ||||
|   parameters = torch.zeros(3,3) | ||||
|   parameters[0,0] = -1 | ||||
|   parameters[1,1] = parameters[2,2] = 1 | ||||
|   return parameters | ||||
|  | ||||
| # clockwise rotate image = counterclockwise rotate the rectangle | ||||
| # degree is between [0, 360] | ||||
| def rotate2affine(degree): | ||||
|   assert degree >= 0 and degree <= 360, 'Invalid degree : {:}'.format(degree) | ||||
|   degree = degree / 180 * math.pi | ||||
|   parameters = torch.zeros(3,3) | ||||
|   parameters[0,0] =  math.cos(-degree) | ||||
|   parameters[0,1] = -math.sin(-degree) | ||||
|   parameters[1,0] =  math.sin(-degree) | ||||
|   parameters[1,1] =  math.cos(-degree) | ||||
|   parameters[2,2] = 1 | ||||
|   return parameters | ||||
|  | ||||
| # shape is a tuple [H, W] | ||||
| def normalize_points(shape, points): | ||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   | ||||
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape) | ||||
|   (H, W), points = shape, points.clone() | ||||
|   points[0, :] = normalize_L(points[0,:], W) | ||||
|   points[1, :] = normalize_L(points[1,:], H) | ||||
|   return points | ||||
|  | ||||
| # shape is a tuple [H, W] | ||||
| def normalize_points_batch(shape, points): | ||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   | ||||
|   assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), 'points are wrong : {:}'.format(points.shape) | ||||
|   (H, W), points = shape, points.clone() | ||||
|   x = normalize_L(points[...,0], W) | ||||
|   y = normalize_L(points[...,1], H) | ||||
|   return torch.stack((x,y), dim=-1) | ||||
|  | ||||
| # shape is a tuple [H, W] | ||||
| def denormalize_points(shape, points): | ||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   | ||||
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape) | ||||
|   (H, W), points = shape, points.clone() | ||||
|   points[0, :] = denormalize_L(points[0,:], W) | ||||
|   points[1, :] = denormalize_L(points[1,:], H) | ||||
|   return points | ||||
|  | ||||
| # shape is a tuple [H, W] | ||||
| def denormalize_points_batch(shape, points): | ||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   | ||||
|   assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), 'points are wrong : {:}'.format(points.shape) | ||||
|   (H, W), points = shape, points.clone() | ||||
|   x = denormalize_L(points[...,0], W) | ||||
|   y = denormalize_L(points[...,1], H) | ||||
|   return torch.stack((x,y), dim=-1) | ||||
|  | ||||
| # make target * theta = source | ||||
| def solve2theta(source, target): | ||||
|   source, target = source.clone(), target.clone() | ||||
|   oks = source[2, :] == 1 | ||||
|   assert torch.sum(oks).item() >= 3, 'valid points : {:} is short'.format(oks) | ||||
|   if target.size(0) == 2: target = torch.cat((target, oks.unsqueeze(0).float()), dim=0) | ||||
|   source, target = source[:, oks], target[:, oks] | ||||
|   source, target = source.transpose(1,0), target.transpose(1,0) | ||||
|   assert source.size(1) == target.size(1) == 3 | ||||
|   #X, residual, rank, s = np.linalg.lstsq(target.numpy(), source.numpy()) | ||||
|   #theta = torch.Tensor(X.T[:2, :]) | ||||
|   X_, qr = torch.gels(source, target) | ||||
|   theta = X_[:3, :2].transpose(1, 0) | ||||
|   return theta | ||||
|  | ||||
| # shape = [H,W] | ||||
| def affine2image(image, theta, shape): | ||||
|   C, H, W = image.size() | ||||
|   theta = theta[:2, :].unsqueeze(0) | ||||
|   grid_size = torch.Size([1, C, shape[0], shape[1]]) | ||||
|   grid  = F.affine_grid(theta, grid_size) | ||||
|   affI  = F.grid_sample(image.unsqueeze(0), grid, mode='bilinear', padding_mode='border') | ||||
|   return affI.squeeze(0) | ||||
		Reference in New Issue
	
	Block a user