update affines for NAS
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -111,3 +111,4 @@ logs | ||||
| # snapshot | ||||
| a.pth | ||||
| cal-merge*.sh | ||||
| GPU-*.sh | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| { | ||||
|   "scheduler": ["str",   "cos"], | ||||
|   "eta_min"  : ["float", "0.0"], | ||||
|   "epochs"   : ["int",   "10"], | ||||
|   "epochs"   : ["int",   "12"], | ||||
|   "warmup"   : ["int",   "0"], | ||||
|   "optim"    : ["str",   "SGD"], | ||||
|   "LR"       : ["float", "0.1"], | ||||
|   | ||||
| @@ -15,10 +15,10 @@ from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
| from models       import CellStructure, CellArchitectures, get_search_spaces | ||||
| from AA_functions import evaluate_for_seed | ||||
| from AA_functions_v2 import evaluate_for_seed | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger): | ||||
| def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): | ||||
|   machine_info, arch_config = get_machine_info(), deepcopy(arch_config) | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
| @@ -28,10 +28,12 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, wor | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configurature | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/CIFAR.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       if use_less: config_path = 'configs/nas-benchmark/LESS.config' | ||||
|       else       : config_path = 'configs/nas-benchmark/ImageNet-16.config' | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
| @@ -41,6 +43,8 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, wor | ||||
|                             logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
| @@ -48,23 +52,42 @@ def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, wor | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, seed, logger) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     results = evaluate_for_seed(arch_config, config, arch, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
| def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   #torch.backends.cudnn.benchmark = True | ||||
| @@ -73,6 +96,9 @@ def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, | ||||
|  | ||||
|   assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) | ||||
|    | ||||
|   if use_less: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   else: | ||||
|     sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) | ||||
|   logger  = Logger(str(sub_dir), 0, False) | ||||
|  | ||||
| @@ -114,7 +140,7 @@ def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(CellStructure.str2structure(arch), \ | ||||
|                                         datasets, xpaths, splits, seed, \ | ||||
|                                         datasets, xpaths, splits, use_less, seed, \ | ||||
|                                         arch_config, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) | ||||
| @@ -130,7 +156,7 @@ def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, splits, seeds, model_str, arch_config): | ||||
| def train_single_model(save_dir, workers, datasets, xpaths, use_less, splits, seeds, model_str, arch_config): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
| @@ -160,7 +186,7 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, seeds, model | ||||
|       checkpoint = torch.load(to_save_name) | ||||
|     else: | ||||
|       logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger) | ||||
|       checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) | ||||
|       torch.save(checkpoint, to_save_name) | ||||
|     # log information | ||||
|     logger.log('{:}'.format(checkpoint['info'])) | ||||
| @@ -252,6 +278,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--use_less',    type=int,   default=0,      help='Using the less-training-epoch config.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   parser.add_argument('--channel',     type=int,                   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',   type=int,                   help='The number of cells in one stage.') | ||||
| @@ -264,7 +291,7 @@ if __name__ == '__main__': | ||||
|   elif args.mode.startswith('specific'): | ||||
|     assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) | ||||
|     model_str = args.mode.split('-')[1] | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ | ||||
|     train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|                          tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   else: | ||||
|     meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) | ||||
| @@ -276,7 +303,7 @@ if __name__ == '__main__': | ||||
|     assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|     assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ | ||||
|     main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ | ||||
|            tuple(args.srange), args.arch_index, tuple(args.seeds), \ | ||||
|            args.mode == 'cover', meta_info, \ | ||||
|            {'channel': args.channel, 'num_cells': args.num_cells}) | ||||
|   | ||||
| @@ -47,6 +47,7 @@ def procedure(xloader, network, criterion, scheduler, optimizer, mode): | ||||
|   elif mode == 'valid': network.eval() | ||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) | ||||
|  | ||||
|   batch_time, end = AverageMeter(), time.time() | ||||
|   for i, (inputs, targets) in enumerate(xloader): | ||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) | ||||
|  | ||||
| @@ -64,7 +65,10 @@ def procedure(xloader, network, criterion, scheduler, optimizer, mode): | ||||
|     losses.update(loss.item(),  inputs.size(0)) | ||||
|     top1.update  (prec1.item(), inputs.size(0)) | ||||
|     top5.update  (prec5.item(), inputs.size(0)) | ||||
|   return losses.avg, top1.avg, top5.avg | ||||
|     # count time | ||||
|     batch_time.update(time.time() - end) | ||||
|     end = time.time() | ||||
|   return losses.avg, top1.avg, top5.avg, batch_time.sum | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -87,18 +91,21 @@ def evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, see | ||||
|   # start training | ||||
|   start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup | ||||
|   train_losses, train_acc1es, train_acc5es, valid_losses, valid_acc1es, valid_acc5es = {}, {}, {}, {}, {}, {} | ||||
|   train_times , valid_times = {}, {} | ||||
|   for epoch in range(total_epoch): | ||||
|     scheduler.update(epoch, 0.0) | ||||
|  | ||||
|     train_loss, train_acc1, train_acc5 = procedure(train_loader, network, criterion, scheduler, optimizer, 'train') | ||||
|     train_loss, train_acc1, train_acc5, train_tm = procedure(train_loader, network, criterion, scheduler, optimizer, 'train') | ||||
|     with torch.no_grad(): | ||||
|       valid_loss, valid_acc1, valid_acc5 = procedure(valid_loader, network, criterion,      None,      None, 'valid') | ||||
|       valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(valid_loader, network, criterion,      None,      None, 'valid') | ||||
|     train_losses[epoch] = train_loss | ||||
|     train_acc1es[epoch] = train_acc1  | ||||
|     train_acc5es[epoch] = train_acc5 | ||||
|     valid_losses[epoch] = valid_loss | ||||
|     valid_acc1es[epoch] = valid_acc1  | ||||
|     valid_acc5es[epoch] = valid_acc5 | ||||
|     train_times [epoch] = train_tm | ||||
|     valid_times [epoch] = valid_tm | ||||
|  | ||||
|     # measure elapsed time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
| @@ -114,9 +121,11 @@ def evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, see | ||||
|                'train_losses': train_losses, | ||||
|                'train_acc1es': train_acc1es, | ||||
|                'train_acc5es': train_acc5es, | ||||
|                'train_times' : train_times, | ||||
|                'valid_losses': valid_losses, | ||||
|                'valid_acc1es': valid_acc1es, | ||||
|                'valid_acc5es': valid_acc5es, | ||||
|                'valid_times' : valid_times, | ||||
|                'net_state_dict': net.state_dict(), | ||||
|                'net_string'  : '{:}'.format(net), | ||||
|                'finish-train': True | ||||
|   | ||||
| @@ -19,9 +19,9 @@ class InferCell(nn.Module): | ||||
|       cur_innod = [] | ||||
|       for (op_name, op_in) in node_info: | ||||
|         if op_in == 0: | ||||
|           layer = OPS[op_name](C_in , C_out, stride) | ||||
|           layer = OPS[op_name](C_in , C_out, stride, True) | ||||
|         else: | ||||
|           layer = OPS[op_name](C_out, C_out,      1) | ||||
|           layer = OPS[op_name](C_out, C_out,      1, True) | ||||
|         cur_index.append( len(self.layers) ) | ||||
|         cur_innod.append( op_in ) | ||||
|         self.layers.append( layer ) | ||||
|   | ||||
| @@ -22,7 +22,7 @@ class TinyNetwork(nn.Module): | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2, True) | ||||
|       else: | ||||
|         cell = InferCell(genotype, C_prev, C_curr, 1) | ||||
|       self.cells.append( cell ) | ||||
|   | ||||
| @@ -4,16 +4,16 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ['OPS', 'ReLUConvBN', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
|  | ||||
| OPS = { | ||||
|   'none'         : lambda C_in, C_out, stride: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'avg'), | ||||
|   'max_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'max'), | ||||
|   'nor_conv_7x7' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1)), | ||||
|   'nor_conv_3x3' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1)), | ||||
|   'nor_conv_1x1' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1)), | ||||
|   'skip_connect' : lambda C_in, C_out, stride: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride), | ||||
|   'none'         : lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg'), | ||||
|   'max_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'max'), | ||||
|   'nor_conv_7x7' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine), | ||||
|   'nor_conv_3x3' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine), | ||||
|   'nor_conv_1x1' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine), | ||||
|   'skip_connect' : lambda C_in, C_out, stride, affine: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine), | ||||
| } | ||||
|  | ||||
| CONNECT_NAS_BENCHMARK  = ['none', 'skip_connect', 'nor_conv_3x3'] | ||||
| @@ -26,12 +26,12 @@ SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK, | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): | ||||
|   def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.op = nn.Sequential( | ||||
|       nn.ReLU(inplace=False), | ||||
|       nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|       nn.BatchNorm2d(C_out) | ||||
|       nn.BatchNorm2d(C_out, affine=affine) | ||||
|     ) | ||||
|  | ||||
|   def forward(self, x): | ||||
| @@ -40,17 +40,17 @@ class ReLUConvBN(nn.Module): | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|   def __init__(self, inplanes, planes, stride, affine=True): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, 1, 1, affine) | ||||
|     if stride == 2: | ||||
|       self.downsample = nn.Sequential( | ||||
|                            nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|                            nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1) | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.in_dim  = inplanes | ||||
| @@ -76,12 +76,12 @@ class ResNetBasicblock(nn.Module): | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, mode): | ||||
|   def __init__(self, C_in, C_out, stride, mode, affine=True): | ||||
|     super(POOLING, self).__init__() | ||||
|     if C_in == C_out: | ||||
|       self.preprocess = None | ||||
|     else: | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0) | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, affine) | ||||
|     if mode == 'avg'  : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|     elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||
| @@ -126,7 +126,7 @@ class Zero(nn.Module): | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride): | ||||
|   def __init__(self, C_in, C_out, stride, affine): | ||||
|     super(FactorizedReduce, self).__init__() | ||||
|     self.stride = stride | ||||
|     self.C_in   = C_in   | ||||
| @@ -141,8 +141,7 @@ class FactorizedReduce(nn.Module): | ||||
|       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|     else: | ||||
|       raise ValueError('Invalid stride : {:}'.format(stride)) | ||||
|      | ||||
|     self.bn = nn.BatchNorm2d(C_out) | ||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.relu(x) | ||||
|   | ||||
| @@ -23,9 +23,9 @@ class SearchCell(nn.Module): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride) for op_name in op_names] | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, False) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1) for op_name in op_names] | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, False) for op_name in op_names] | ||||
|         self.edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|   | ||||
| @@ -29,6 +29,7 @@ save_dir=./output/AA-NAS-BENCH-4/ | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/AA-NAS-Bench-main.py \ | ||||
| 	--mode ${mode} --save_dir ${save_dir} --max_node 4 \ | ||||
| 	--use_less 0 \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--splits   1       0       0        0 \ | ||||
| 	--xpaths $TORCH_HOME/cifar.python \ | ||||
|   | ||||
		Reference in New Issue
	
	Block a user