Update LFNA ablation codes
This commit is contained in:
		| @@ -1,280 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # |  | ||||||
| ##################################################### |  | ||||||
| # python exps/LFNA/lfna-debug.py --env_version v1 --hidden_dim 16 |  | ||||||
| ##################################################### |  | ||||||
| import sys, time, copy, torch, random, argparse |  | ||||||
| from tqdm import tqdm |  | ||||||
| from copy import deepcopy |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() |  | ||||||
| if str(lib_dir) not in sys.path: |  | ||||||
|     sys.path.insert(0, str(lib_dir)) |  | ||||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint |  | ||||||
| from log_utils import time_string |  | ||||||
| from log_utils import AverageMeter, convert_secs2time |  | ||||||
|  |  | ||||||
| from utils import split_str2indexes |  | ||||||
|  |  | ||||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn |  | ||||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric |  | ||||||
| from datasets.synthetic_core import get_synthetic_env |  | ||||||
| from models.xcore import get_model |  | ||||||
| from xlayers import super_core |  | ||||||
|  |  | ||||||
|  |  | ||||||
| from lfna_utils import lfna_setup, train_model, TimeData |  | ||||||
| from lfna_models import HyperNet |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class LFNAmlp: |  | ||||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" |  | ||||||
|  |  | ||||||
|     def __init__(self, obs_dim, hidden_sizes, act_name, criterion): |  | ||||||
|         self.delta_net = super_core.SuperSequential( |  | ||||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), |  | ||||||
|             super_core.super_name2activation[act_name](), |  | ||||||
|             super_core.SuperLinear(hidden_sizes[1], 1), |  | ||||||
|         ) |  | ||||||
|         self.meta_optimizer = torch.optim.Adam( |  | ||||||
|             self.delta_net.parameters(), lr=0.01, amsgrad=True |  | ||||||
|         ) |  | ||||||
|         self.criterion = criterion |  | ||||||
|  |  | ||||||
|     def adapt(self, model, seq_flatten_w): |  | ||||||
|         delta_inputs = torch.stack(seq_flatten_w, dim=-1) |  | ||||||
|         delta = self.delta_net(delta_inputs) |  | ||||||
|         container = model.get_w_container() |  | ||||||
|         unflatten_delta = container.unflatten(delta) |  | ||||||
|         future_container = container.create_container(unflatten_delta) |  | ||||||
|         return future_container |  | ||||||
|  |  | ||||||
|     def step(self): |  | ||||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) |  | ||||||
|         self.meta_optimizer.step() |  | ||||||
|  |  | ||||||
|     def zero_grad(self): |  | ||||||
|         self.meta_optimizer.zero_grad() |  | ||||||
|         self.delta_net.zero_grad() |  | ||||||
|  |  | ||||||
|     def state_dict(self): |  | ||||||
|         return dict( |  | ||||||
|             delta_net=self.delta_net.state_dict(), |  | ||||||
|             meta_optimizer=self.meta_optimizer.state_dict(), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): |  | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |  | ||||||
|     dynamic_env = env_info["dynamic_env"] |  | ||||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) |  | ||||||
|  |  | ||||||
|     total_time = env_info["total"] |  | ||||||
|     for i in range(total_time): |  | ||||||
|         for xkey in ("timestamp", "x", "y"): |  | ||||||
|             nkey = "{:}-{:}".format(i, xkey) |  | ||||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) |  | ||||||
|     train_time_bar = total_time // 2 |  | ||||||
|  |  | ||||||
|     criterion = torch.nn.MSELoss() |  | ||||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) |  | ||||||
|  |  | ||||||
|     adaptor = LFNAmlp(args.meta_seq, (200, 200), "leaky_relu", criterion) |  | ||||||
|  |  | ||||||
|     # pre-train the model |  | ||||||
|     dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) |  | ||||||
|  |  | ||||||
|     shape_container = model.get_w_container().to_shape_container() |  | ||||||
|     hypernet = HyperNet(shape_container, 16) |  | ||||||
|  |  | ||||||
|     optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) |  | ||||||
|  |  | ||||||
|     best_loss, best_param = None, None |  | ||||||
|     for _iepoch in range(args.epochs): |  | ||||||
|         container = hypernet(None) |  | ||||||
|  |  | ||||||
|         preds = model.forward_with_container(dataset.x, container) |  | ||||||
|         optimizer.zero_grad() |  | ||||||
|         loss = criterion(preds, dataset.y) |  | ||||||
|         loss.backward() |  | ||||||
|         optimizer.step() |  | ||||||
|         # save best |  | ||||||
|         if best_loss is None or best_loss > loss.item(): |  | ||||||
|             best_loss = loss.item() |  | ||||||
|             best_param = copy.deepcopy(model.state_dict()) |  | ||||||
|     print("hyper-net : best={:.4f}".format(best_loss)) |  | ||||||
|  |  | ||||||
|     init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) |  | ||||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) |  | ||||||
|     import pdb |  | ||||||
|  |  | ||||||
|     pdb.set_trace() |  | ||||||
|  |  | ||||||
|     all_past_containers = [] |  | ||||||
|     ground_truth_path = ( |  | ||||||
|         logger.path(None) / ".." / "use-same-timestamp-v1-d16" / "final-ckp.pth" |  | ||||||
|     ) |  | ||||||
|     ground_truth_data = torch.load(ground_truth_path) |  | ||||||
|     all_gt_containers = ground_truth_data["w_container_per_epoch"] |  | ||||||
|     all_gt_flattens = dict() |  | ||||||
|     for idx, container in all_gt_containers.items(): |  | ||||||
|         all_gt_flattens[idx] = container.no_grad_clone().flatten() |  | ||||||
|  |  | ||||||
|     # LFNA meta-training |  | ||||||
|     meta_loss_meter = AverageMeter() |  | ||||||
|     per_epoch_time, start_time = AverageMeter(), time.time() |  | ||||||
|     for iepoch in range(args.epochs): |  | ||||||
|  |  | ||||||
|         need_time = "Time Left: {:}".format( |  | ||||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) |  | ||||||
|         ) |  | ||||||
|         logger.log( |  | ||||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) |  | ||||||
|             + need_time |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         adaptor.zero_grad() |  | ||||||
|  |  | ||||||
|         meta_losses = [] |  | ||||||
|         for ibatch in range(args.meta_batch): |  | ||||||
|             future_timestamp = random.randint(args.meta_seq, train_time_bar) |  | ||||||
|             future_dataset = TimeData( |  | ||||||
|                 future_timestamp, |  | ||||||
|                 env_info["{:}-x".format(future_timestamp)], |  | ||||||
|                 env_info["{:}-y".format(future_timestamp)], |  | ||||||
|             ) |  | ||||||
|             seq_datasets = [] |  | ||||||
|             for iseq in range(args.meta_seq): |  | ||||||
|                 cur_time = future_timestamp - iseq - 1 |  | ||||||
|                 cur_x = env_info["{:}-x".format(cur_time)] |  | ||||||
|                 cur_y = env_info["{:}-y".format(cur_time)] |  | ||||||
|                 seq_datasets.append(TimeData(cur_time, cur_x, cur_y)) |  | ||||||
|             seq_datasets.reverse() |  | ||||||
|             seq_flatten_w = [ |  | ||||||
|                 all_gt_flattens[dataset.timestamp] for dataset in seq_datasets |  | ||||||
|             ] |  | ||||||
|             future_container = adaptor.adapt(network, seq_flatten_w) |  | ||||||
|             """ |  | ||||||
|             future_y_hat = network.forward_with_container( |  | ||||||
|                 future_dataset.x, future_container |  | ||||||
|             ) |  | ||||||
|             future_loss = adaptor.criterion(future_y_hat, future_dataset.y) |  | ||||||
|             """ |  | ||||||
|             future_loss = adaptor.criterion( |  | ||||||
|                 future_container.flatten(), all_gt_flattens[future_timestamp] |  | ||||||
|             ) |  | ||||||
|             # import pdb; pdb.set_trace() |  | ||||||
|             meta_losses.append(future_loss) |  | ||||||
|         meta_loss = torch.stack(meta_losses).mean() |  | ||||||
|         meta_loss.backward() |  | ||||||
|         adaptor.step() |  | ||||||
|  |  | ||||||
|         meta_loss_meter.update(meta_loss.item()) |  | ||||||
|  |  | ||||||
|         logger.log( |  | ||||||
|             "meta-loss: {:.4f} ({:.4f}) ".format( |  | ||||||
|                 meta_loss_meter.avg, meta_loss_meter.val |  | ||||||
|             ) |  | ||||||
|         ) |  | ||||||
|         if iepoch % 200 == 0: |  | ||||||
|             save_checkpoint( |  | ||||||
|                 {"adaptor": adaptor.state_dict(), "iepoch": iepoch}, |  | ||||||
|                 logger.path("model"), |  | ||||||
|                 logger, |  | ||||||
|             ) |  | ||||||
|         per_epoch_time.update(time.time() - start_time) |  | ||||||
|         start_time = time.time() |  | ||||||
|  |  | ||||||
|     w_container_per_epoch = dict() |  | ||||||
|     # import pdb; pdb.set_trace() |  | ||||||
|     for idx in range(1, env_info["total"]): |  | ||||||
|         future_time = env_info["{:}-timestamp".format(idx)] |  | ||||||
|         future_x = env_info["{:}-x".format(idx)] |  | ||||||
|         future_y = env_info["{:}-y".format(idx)] |  | ||||||
|         seq_datasets = [] |  | ||||||
|         for iseq in range(1, args.meta_seq + 1): |  | ||||||
|             cur_time = future_timestamp - iseq - 1 |  | ||||||
|             if cur_time < 0: |  | ||||||
|                 cur_time = 0 |  | ||||||
|             cur_x = env_info["{:}-x".format(cur_time)] |  | ||||||
|             cur_y = env_info["{:}-y".format(cur_time)] |  | ||||||
|             seq_datasets.append(TimeData(cur_time, cur_x, cur_y)) |  | ||||||
|         seq_datasets.reverse() |  | ||||||
|         seq_flatten_w = [all_gt_flattens[dataset.timestamp] for dataset in seq_datasets] |  | ||||||
|         future_container = adaptor.adapt(network, seq_flatten_w) |  | ||||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() |  | ||||||
|         with torch.no_grad(): |  | ||||||
|             future_y_hat = network.forward_with_container( |  | ||||||
|                 future_x, w_container_per_epoch[idx] |  | ||||||
|             ) |  | ||||||
|             future_loss = adaptor.criterion(future_y_hat, future_y) |  | ||||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) |  | ||||||
|  |  | ||||||
|     save_checkpoint( |  | ||||||
|         {"w_container_per_epoch": w_container_per_epoch}, |  | ||||||
|         logger.path(None) / "final-ckp.pth", |  | ||||||
|         logger, |  | ||||||
|     ) |  | ||||||
|  |  | ||||||
|     logger.log("-" * 200 + "\n") |  | ||||||
|     logger.close() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == "__main__": |  | ||||||
|     parser = argparse.ArgumentParser("Use the data in the past.") |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--save_dir", |  | ||||||
|         type=str, |  | ||||||
|         default="./outputs/lfna-synthetic/lfna-debug", |  | ||||||
|         help="The checkpoint directory.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--env_version", |  | ||||||
|         type=str, |  | ||||||
|         required=True, |  | ||||||
|         help="The synthetic enviornment version.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--hidden_dim", |  | ||||||
|         type=int, |  | ||||||
|         required=True, |  | ||||||
|         help="The hidden dimension.", |  | ||||||
|     ) |  | ||||||
|     ##### |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--init_lr", |  | ||||||
|         type=float, |  | ||||||
|         default=0.1, |  | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_batch", |  | ||||||
|         type=int, |  | ||||||
|         default=32, |  | ||||||
|         help="The batch size for the meta-model", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--meta_seq", |  | ||||||
|         type=int, |  | ||||||
|         default=10, |  | ||||||
|         help="The length of the sequence for meta-model.", |  | ||||||
|     ) |  | ||||||
|     parser.add_argument( |  | ||||||
|         "--epochs", |  | ||||||
|         type=int, |  | ||||||
|         default=2000, |  | ||||||
|         help="The total number of epochs.", |  | ||||||
|     ) |  | ||||||
|     # Random Seed |  | ||||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") |  | ||||||
|     args = parser.parse_args() |  | ||||||
|     if args.rand_seed is None or args.rand_seed < 0: |  | ||||||
|         args.rand_seed = random.randint(1, 100000) |  | ||||||
|     assert args.save_dir is not None, "The save dir argument can not be None" |  | ||||||
|     args.save_dir = "{:}-{:}-d{:}".format( |  | ||||||
|         args.save_dir, args.env_version, args.hidden_dim |  | ||||||
|     ) |  | ||||||
|     main(args) |  | ||||||
							
								
								
									
										176
									
								
								exps/LFNA/lfna-test-hpnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								exps/LFNA/lfna-test-hpnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 | ||||||
|  | ##################################################### | ||||||
|  | import sys, time, copy, torch, random, argparse | ||||||
|  | from tqdm import tqdm | ||||||
|  | from copy import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  | from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||||
|  | from log_utils import time_string | ||||||
|  | from log_utils import AverageMeter, convert_secs2time | ||||||
|  |  | ||||||
|  | from utils import split_str2indexes | ||||||
|  |  | ||||||
|  | from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||||
|  | from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||||
|  | from datasets.synthetic_core import get_synthetic_env | ||||||
|  | from models.xcore import get_model | ||||||
|  | from xlayers import super_core, trunc_normal_ | ||||||
|  |  | ||||||
|  |  | ||||||
|  | from lfna_utils import lfna_setup, train_model, TimeData | ||||||
|  |  | ||||||
|  | # from lfna_models import HyperNet_VX as HyperNet | ||||||
|  | from lfna_models import HyperNet | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(args): | ||||||
|  |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|  |     dynamic_env = env_info["dynamic_env"] | ||||||
|  |     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||||
|  |     criterion = torch.nn.MSELoss() | ||||||
|  |  | ||||||
|  |     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||||
|  |  | ||||||
|  |     shape_container = model.get_w_container().to_shape_container() | ||||||
|  |     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||||
|  |     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||||
|  |     task_embed = torch.nn.Parameter(torch.Tensor(1, args.task_dim)) | ||||||
|  |     trunc_normal_(task_embed, std=0.02) | ||||||
|  |  | ||||||
|  |     parameters = list(hypernet.parameters()) + [task_embed] | ||||||
|  |     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||||
|  |     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||||
|  |         optimizer, | ||||||
|  |         milestones=[ | ||||||
|  |             int(args.epochs * 0.8), | ||||||
|  |             int(args.epochs * 0.9), | ||||||
|  |         ], | ||||||
|  |         gamma=0.1, | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |     # total_bar = env_info["total"] - 1 | ||||||
|  |     total_bar = 1 | ||||||
|  |     # LFNA meta-training | ||||||
|  |     loss_meter = AverageMeter() | ||||||
|  |     per_epoch_time, start_time = AverageMeter(), time.time() | ||||||
|  |     for iepoch in range(args.epochs): | ||||||
|  |  | ||||||
|  |         need_time = "Time Left: {:}".format( | ||||||
|  |             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||||
|  |         ) | ||||||
|  |         head_str = ( | ||||||
|  |             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||||
|  |             + need_time | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |         losses = [] | ||||||
|  |         # for ibatch in range(args.meta_batch): | ||||||
|  |         for cur_time in range(total_bar): | ||||||
|  |             # cur_time = random.randint(0, total_bar) | ||||||
|  |             cur_task_embed = task_embed | ||||||
|  |             cur_container = hypernet(cur_task_embed) | ||||||
|  |             cur_x = env_info["{:}-x".format(cur_time)] | ||||||
|  |             cur_y = env_info["{:}-y".format(cur_time)] | ||||||
|  |             cur_dataset = TimeData(cur_time, cur_x, cur_y) | ||||||
|  |  | ||||||
|  |             preds = model.forward_with_container(cur_dataset.x, cur_container) | ||||||
|  |             optimizer.zero_grad() | ||||||
|  |             loss = criterion(preds, cur_dataset.y) | ||||||
|  |  | ||||||
|  |             losses.append(loss) | ||||||
|  |  | ||||||
|  |         final_loss = torch.stack(losses).mean() | ||||||
|  |         final_loss.backward() | ||||||
|  |         optimizer.step() | ||||||
|  |         lr_scheduler.step() | ||||||
|  |  | ||||||
|  |         loss_meter.update(final_loss.item()) | ||||||
|  |         if iepoch % 200 == 0: | ||||||
|  |             logger.log( | ||||||
|  |                 head_str | ||||||
|  |                 + "meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||||
|  |                     loss_meter.avg, | ||||||
|  |                     loss_meter.val, | ||||||
|  |                     min(lr_scheduler.get_lr()), | ||||||
|  |                     len(losses), | ||||||
|  |                 ) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|  |             save_checkpoint( | ||||||
|  |                 { | ||||||
|  |                     "hypernet": hypernet.state_dict(), | ||||||
|  |                     "task_embed": task_embed, | ||||||
|  |                     "lr_scheduler": lr_scheduler.state_dict(), | ||||||
|  |                     "iepoch": iepoch, | ||||||
|  |                 }, | ||||||
|  |                 logger.path("model"), | ||||||
|  |                 logger, | ||||||
|  |             ) | ||||||
|  |             loss_meter.reset() | ||||||
|  |         per_epoch_time.update(time.time() - start_time) | ||||||
|  |         start_time = time.time() | ||||||
|  |  | ||||||
|  |     print(model) | ||||||
|  |     print(hypernet) | ||||||
|  |  | ||||||
|  |     logger.log("-" * 200 + "\n") | ||||||
|  |     logger.close() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     parser = argparse.ArgumentParser("Use the data in the past.") | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--save_dir", | ||||||
|  |         type=str, | ||||||
|  |         default="./outputs/lfna-synthetic/lfna-test-hpnet", | ||||||
|  |         help="The checkpoint directory.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--env_version", | ||||||
|  |         type=str, | ||||||
|  |         required=True, | ||||||
|  |         help="The synthetic enviornment version.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--hidden_dim", | ||||||
|  |         type=int, | ||||||
|  |         required=True, | ||||||
|  |         help="The hidden dimension.", | ||||||
|  |     ) | ||||||
|  |     ##### | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--init_lr", | ||||||
|  |         type=float, | ||||||
|  |         default=0.1, | ||||||
|  |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--meta_batch", | ||||||
|  |         type=int, | ||||||
|  |         default=64, | ||||||
|  |         help="The batch size for the meta-model", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--epochs", | ||||||
|  |         type=int, | ||||||
|  |         default=2000, | ||||||
|  |         help="The total number of epochs.", | ||||||
|  |     ) | ||||||
|  |     # Random Seed | ||||||
|  |     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||||
|  |     args = parser.parse_args() | ||||||
|  |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|  |         args.rand_seed = random.randint(1, 100000) | ||||||
|  |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|  |     args.task_dim = args.hidden_dim | ||||||
|  |     args.save_dir = "{:}-{:}-d{:}".format( | ||||||
|  |         args.save_dir, args.env_version, args.hidden_dim | ||||||
|  |     ) | ||||||
|  |     main(args) | ||||||
							
								
								
									
										134
									
								
								exps/LFNA/lfna-ttss-hpnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										134
									
								
								exps/LFNA/lfna-ttss-hpnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,134 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | # python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16 | ||||||
|  | ##################################################### | ||||||
|  | import sys, time, copy, torch, random, argparse | ||||||
|  | from tqdm import tqdm | ||||||
|  | from copy import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  | from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||||
|  | from log_utils import time_string | ||||||
|  | from log_utils import AverageMeter, convert_secs2time | ||||||
|  |  | ||||||
|  | from utils import split_str2indexes | ||||||
|  |  | ||||||
|  | from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||||
|  | from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||||
|  | from datasets.synthetic_core import get_synthetic_env | ||||||
|  | from models.xcore import get_model | ||||||
|  | from xlayers import super_core | ||||||
|  |  | ||||||
|  |  | ||||||
|  | from lfna_utils import lfna_setup, train_model, TimeData | ||||||
|  | from lfna_models import HyperNet_VX as HyperNet | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(args): | ||||||
|  |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|  |     dynamic_env = env_info["dynamic_env"] | ||||||
|  |     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||||
|  |  | ||||||
|  |     total_time = env_info["total"] | ||||||
|  |     for i in range(total_time): | ||||||
|  |         for xkey in ("timestamp", "x", "y"): | ||||||
|  |             nkey = "{:}-{:}".format(i, xkey) | ||||||
|  |             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||||
|  |     train_time_bar = total_time // 2 | ||||||
|  |  | ||||||
|  |     criterion = torch.nn.MSELoss() | ||||||
|  |     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||||
|  |  | ||||||
|  |     # pre-train the model | ||||||
|  |     dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) | ||||||
|  |  | ||||||
|  |     shape_container = model.get_w_container().to_shape_container() | ||||||
|  |     hypernet = HyperNet(shape_container, 16) | ||||||
|  |     print(hypernet) | ||||||
|  |  | ||||||
|  |     optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) | ||||||
|  |  | ||||||
|  |     best_loss, best_param = None, None | ||||||
|  |     for _iepoch in range(args.epochs): | ||||||
|  |         container = hypernet(None) | ||||||
|  |  | ||||||
|  |         preds = model.forward_with_container(dataset.x, container) | ||||||
|  |         optimizer.zero_grad() | ||||||
|  |         loss = criterion(preds, dataset.y) | ||||||
|  |         loss.backward() | ||||||
|  |         optimizer.step() | ||||||
|  |         # save best | ||||||
|  |         if best_loss is None or best_loss > loss.item(): | ||||||
|  |             best_loss = loss.item() | ||||||
|  |             best_param = copy.deepcopy(model.state_dict()) | ||||||
|  |     print("hyper-net : best={:.4f}".format(best_loss)) | ||||||
|  |  | ||||||
|  |     init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) | ||||||
|  |     logger.log("The pre-training loss is {:.4f}".format(init_loss)) | ||||||
|  |  | ||||||
|  |     print(model) | ||||||
|  |     print(hypernet) | ||||||
|  |  | ||||||
|  |     logger.log("-" * 200 + "\n") | ||||||
|  |     logger.close() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     parser = argparse.ArgumentParser("Use the data in the past.") | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--save_dir", | ||||||
|  |         type=str, | ||||||
|  |         default="./outputs/lfna-synthetic/lfna-debug", | ||||||
|  |         help="The checkpoint directory.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--env_version", | ||||||
|  |         type=str, | ||||||
|  |         required=True, | ||||||
|  |         help="The synthetic enviornment version.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--hidden_dim", | ||||||
|  |         type=int, | ||||||
|  |         required=True, | ||||||
|  |         help="The hidden dimension.", | ||||||
|  |     ) | ||||||
|  |     ##### | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--init_lr", | ||||||
|  |         type=float, | ||||||
|  |         default=0.1, | ||||||
|  |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--meta_batch", | ||||||
|  |         type=int, | ||||||
|  |         default=32, | ||||||
|  |         help="The batch size for the meta-model", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--meta_seq", | ||||||
|  |         type=int, | ||||||
|  |         default=10, | ||||||
|  |         help="The length of the sequence for meta-model.", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--epochs", | ||||||
|  |         type=int, | ||||||
|  |         default=2000, | ||||||
|  |         help="The total number of epochs.", | ||||||
|  |     ) | ||||||
|  |     # Random Seed | ||||||
|  |     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||||
|  |     args = parser.parse_args() | ||||||
|  |     if args.rand_seed is None or args.rand_seed < 0: | ||||||
|  |         args.rand_seed = random.randint(1, 100000) | ||||||
|  |     assert args.save_dir is not None, "The save dir argument can not be None" | ||||||
|  |     args.save_dir = "{:}-{:}-d{:}".format( | ||||||
|  |         args.save_dir, args.env_version, args.hidden_dim | ||||||
|  |     ) | ||||||
|  |     main(args) | ||||||
							
								
								
									
										97
									
								
								exps/LFNA/lfna_models.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								exps/LFNA/lfna_models.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,97 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
|  | ##################################################### | ||||||
|  | import copy | ||||||
|  | import torch | ||||||
|  |  | ||||||
|  | from xlayers import super_core | ||||||
|  | from xlayers import trunc_normal_ | ||||||
|  | from models.xcore import get_model | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class HyperNet(super_core.SuperModule): | ||||||
|  |     """The hyper-network.""" | ||||||
|  |  | ||||||
|  |     def __init__( | ||||||
|  |         self, shape_container, layer_embeding, task_embedding, return_container=True | ||||||
|  |     ): | ||||||
|  |         super(HyperNet, self).__init__() | ||||||
|  |         self._shape_container = shape_container | ||||||
|  |         self._num_layers = len(shape_container) | ||||||
|  |         self._numel_per_layer = [] | ||||||
|  |         for ilayer in range(self._num_layers): | ||||||
|  |             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||||
|  |  | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_layer_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)), | ||||||
|  |         ) | ||||||
|  |         trunc_normal_(self._super_layer_embed, std=0.02) | ||||||
|  |  | ||||||
|  |         model_kwargs = dict( | ||||||
|  |             input_dim=layer_embeding + task_embedding, | ||||||
|  |             output_dim=max(self._numel_per_layer), | ||||||
|  |             hidden_dim=layer_embeding * 4, | ||||||
|  |             act_cls="sigmoid", | ||||||
|  |             norm_cls="identity", | ||||||
|  |         ) | ||||||
|  |         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||||
|  |         self._return_container = return_container | ||||||
|  |         print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, task_embed): | ||||||
|  |         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||||
|  |         joint_embed = torch.cat((task_embed, self._super_layer_embed), dim=-1) | ||||||
|  |         weights = self._generator(joint_embed) | ||||||
|  |         if self._return_container: | ||||||
|  |             weights = torch.split(weights, 1) | ||||||
|  |             return self._shape_container.translate(weights) | ||||||
|  |         else: | ||||||
|  |             return weights | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input): | ||||||
|  |         raise NotImplementedError | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class HyperNet_VX(super_core.SuperModule): | ||||||
|  |     def __init__(self, shape_container, input_embeding, return_container=True): | ||||||
|  |         super(HyperNet_VX, self).__init__() | ||||||
|  |         self._shape_container = shape_container | ||||||
|  |         self._num_layers = len(shape_container) | ||||||
|  |         self._numel_per_layer = [] | ||||||
|  |         for ilayer in range(self._num_layers): | ||||||
|  |             self._numel_per_layer.append(shape_container[ilayer].numel()) | ||||||
|  |  | ||||||
|  |         self.register_parameter( | ||||||
|  |             "_super_layer_embed", | ||||||
|  |             torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)), | ||||||
|  |         ) | ||||||
|  |         trunc_normal_(self._super_layer_embed, std=0.02) | ||||||
|  |  | ||||||
|  |         model_kwargs = dict( | ||||||
|  |             input_dim=input_embeding, | ||||||
|  |             output_dim=max(self._numel_per_layer), | ||||||
|  |             hidden_dim=input_embeding * 4, | ||||||
|  |             act_cls="sigmoid", | ||||||
|  |             norm_cls="identity", | ||||||
|  |         ) | ||||||
|  |         self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||||
|  |         self._return_container = return_container | ||||||
|  |         print("generator: {:}".format(self._generator)) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input): | ||||||
|  |         weights = self._generator(self._super_layer_embed) | ||||||
|  |         if self._return_container: | ||||||
|  |             weights = torch.split(weights, 1) | ||||||
|  |             return self._shape_container.translate(weights) | ||||||
|  |         else: | ||||||
|  |             return weights | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input): | ||||||
|  |         raise NotImplementedError | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape)) | ||||||
| @@ -41,4 +41,5 @@ super_name2activation = { | |||||||
|  |  | ||||||
|  |  | ||||||
| from .super_trade_stem import SuperAlphaEBDv1 | from .super_trade_stem import SuperAlphaEBDv1 | ||||||
|  | from .super_positional_embedding import SuperDynamicPositionE | ||||||
| from .super_positional_embedding import SuperPositionalEncoder | from .super_positional_embedding import SuperPositionalEncoder | ||||||
|   | |||||||
| @@ -10,6 +10,41 @@ from .super_module import SuperModule | |||||||
| from .super_module import IntSpaceType | from .super_module import IntSpaceType | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperDynamicPositionE(SuperModule): | ||||||
|  |     """Applies a positional encoding to the input positions.""" | ||||||
|  |  | ||||||
|  |     def __init__(self, dimension: int, scale: float = 1.0) -> None: | ||||||
|  |         super(SuperDynamicPositionE, self).__init__() | ||||||
|  |  | ||||||
|  |         self._scale = scale | ||||||
|  |         self._dimension = dimension | ||||||
|  |         # weights to be optimized | ||||||
|  |         self.register_buffer( | ||||||
|  |             "_div_term", | ||||||
|  |             torch.exp( | ||||||
|  |                 torch.arange(0, dimension, 2).float() * (-math.log(10000.0) / dimension) | ||||||
|  |             ), | ||||||
|  |         ) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         root_node = spaces.VirtualNode(id(self)) | ||||||
|  |         return root_node | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         import pdb | ||||||
|  |  | ||||||
|  |         pdb.set_trace() | ||||||
|  |         print("---") | ||||||
|  |         return F.linear(input, self._super_weight, self._super_bias) | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return "scale={:}, dim={:}".format(self._scale, self._dimension) | ||||||
|  |  | ||||||
|  |  | ||||||
| class SuperPositionalEncoder(SuperModule): | class SuperPositionalEncoder(SuperModule): | ||||||
|     """Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf |     """Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf | ||||||
|     https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65 |     https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65 | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user