update NAS-Bench-102
This commit is contained in:
		| @@ -16,7 +16,8 @@ Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. | ||||
|  | ||||
| The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w). | ||||
| You can move it to anywhere you want and send its path to our API for initialization. | ||||
| - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. | ||||
| - v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||
| - v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | ||||
|  | ||||
| The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data. | ||||
| @@ -108,8 +109,12 @@ print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) # print loss | ||||
| `NASBench102API` is the topest level api. Please see the following usages: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API as API | ||||
| api = API('NAS-Bench-102-v1_0-e61699.pth') | ||||
| api = API('NAS-Bench-102-v1_0-e61699.pth') # This will load all the information of NAS-Bench-102 except the trained weights | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-102-v1_0-e61699.pth in ~/.torch/. | ||||
| api.show(-1)  # show info of all architectures | ||||
| api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-102-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights | ||||
|  | ||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||
| ``` | ||||
|  | ||||
|  | ||||
|   | ||||
							
								
								
									
										84
									
								
								exps/NAS-Bench-102/check.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										84
									
								
								exps/NAS-Bench-102/check.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,84 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # python exps/NAS-Bench-102/check.py --base_save_dir  | ||||
| ################################################## | ||||
| import os, sys, time, argparse, collections | ||||
| from shutil import copyfile | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def check_files(save_dir, meta_file, basestr): | ||||
|   meta_infos     = torch.load(meta_file, map_location='cpu') | ||||
|   meta_archs     = meta_infos['archs'] | ||||
|   meta_num_archs = meta_infos['total'] | ||||
|   meta_max_node  = meta_infos['max_node'] | ||||
|   assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) | ||||
|  | ||||
|   sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) | ||||
|   print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) | ||||
|    | ||||
|   subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 | ||||
|   num_seeds = defaultdict(lambda: 0) | ||||
|   for index, sub_dir in enumerate(sub_model_dirs): | ||||
|     xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) | ||||
|     #xcheckpoints = list(sub_dir.glob('arch-*-seed-0777.pth')) + list(sub_dir.glob('arch-*-seed-0888.pth')) + list(sub_dir.glob('arch-*-seed-0999.pth')) | ||||
|     arch_indexes = set() | ||||
|     for checkpoint in xcheckpoints: | ||||
|       temp_names = checkpoint.name.split('-') | ||||
|       assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) | ||||
|       arch_indexes.add( temp_names[1] ) | ||||
|     subdir2archs[sub_dir] = sorted(list(arch_indexes)) | ||||
|     num_evaluated_arch   += len(arch_indexes) | ||||
|     # count number of seeds for each architecture | ||||
|     for arch_index in arch_indexes: | ||||
|       num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 | ||||
|   print('There are {:5d} architectures that have been evaluated ({:} in total, {:} ckps in total).'.format(num_evaluated_arch, meta_num_archs, sum(k*v for k, v in num_seeds.items()))) | ||||
|   for key in sorted( list( num_seeds.keys() ) ): print ('There are {:5d} architectures that are evaluated {:} times.'.format(num_seeds[key], key)) | ||||
|  | ||||
|   dir2ckps, dir2ckp_exists = dict(), dict() | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for IDX, (sub_dir, arch_indexes) in enumerate(subdir2archs.items()): | ||||
|     seeds = [777, 888, 999] | ||||
|     numrs = defaultdict(lambda: 0) | ||||
|     all_checkpoints, all_ckp_exists = [], [] | ||||
|     for arch_index in arch_indexes: | ||||
|       checkpoints = ['arch-{:}-seed-{:04d}.pth'.format(arch_index, seed) for seed in seeds] | ||||
|       ckp_exists  = [(sub_dir/x).exists() for x in checkpoints] | ||||
|       arch_index  = int(arch_index) | ||||
|       assert 0 <= arch_index < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) | ||||
|       all_checkpoints += checkpoints | ||||
|       all_ckp_exists  += ckp_exists | ||||
|       numrs[sum(ckp_exists)] += 1 | ||||
|     dir2ckps[ str(sub_dir) ]       = all_checkpoints | ||||
|     dir2ckp_exists[ str(sub_dir) ] = all_ckp_exists | ||||
|     # measure time | ||||
|     epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     numrstr = ', '.join( ['{:}: {:03d}'.format(x, numrs[x]) for x in sorted(numrs.keys())] ) | ||||
|     print('{:} load [{:2d}/{:2d}] [{:03d} archs] [{:04d}->{:04d} ckps] {:} done, need {:}. {:}'.format(time_string(), IDX+1, len(subdir2archs), len(arch_indexes), len(all_checkpoints), sum(all_ckp_exists), sub_dir, convert_secs2time(epoch_time.avg * (len(subdir2archs)-IDX-1), True), numrstr)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   parser = argparse.ArgumentParser(description='NAS Benchmark 102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--base_save_dir',  type=str, default='./output/NAS-BENCH-102-4',     help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--max_node',       type=int, default=4,                                 help='The maximum node in a cell.') | ||||
|   parser.add_argument('--channel',        type=int, default=16,                                help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',      type=int, default=5,                                 help='The number of cells in one stage.') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   save_dir  = Path( args.base_save_dir ) | ||||
|   meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) | ||||
|   assert save_dir.exists(),  'invalid save dir path : {:}'.format(save_dir) | ||||
|   assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) | ||||
|   print ('check NAS-Bench-102 in {:}'.format(save_dir)) | ||||
|  | ||||
|   basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells) | ||||
|   check_files(save_dir, meta_path, basestr) | ||||
| @@ -79,6 +79,16 @@ class NASBench102API(object): | ||||
|     else: arch_index = -1 | ||||
|     return arch_index | ||||
|  | ||||
|   def reload(self, archive_root, index): | ||||
|     assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) | ||||
|     xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index)) | ||||
|     assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index) | ||||
|     assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) | ||||
|     xdata = torch.load(xfile_path) | ||||
|     assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) | ||||
|     self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] ) | ||||
|     self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] ) | ||||
|    | ||||
|   def query_by_arch(self, arch, use_12epochs_result=False): | ||||
|     if isinstance(arch, int): | ||||
|       arch_index = arch | ||||
| @@ -125,10 +135,18 @@ class NASBench102API(object): | ||||
|         best_index, highest_accuracy = idx, accuracy | ||||
|     return best_index | ||||
|  | ||||
|   # return the topology structure of the `index`-th architecture | ||||
|   def arch(self, index): | ||||
|     assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs)) | ||||
|     return copy.deepcopy(self.meta_archs[index]) | ||||
|  | ||||
|   # obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed` | ||||
|   def get_net_param(self, index, dataset, seed, use_12epochs_result=False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     return archresult.get_net_param(dataset, seed) | ||||
|  | ||||
|   def get_more_info(self, index, dataset, use_12epochs_result=False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
| @@ -238,6 +256,13 @@ class ArchResults(object): | ||||
|   def get_dataset_names(self): | ||||
|     return list(self.dataset_seed.keys()) | ||||
|  | ||||
|   def get_net_param(self, dataset, seed=None): | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|       return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds} | ||||
|     else: | ||||
|       return self.all_results[(dataset, seed)].get_net_param() | ||||
|  | ||||
|   def query(self, dataset, seed=None): | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user