support first-order DARTS on the NASNet search space
This commit is contained in:
parent
56f2161a3f
commit
db2760c260
9
configs/search-archs/DARTS-NASNet-CIFAR.config
Normal file
9
configs/search-archs/DARTS-NASNet-CIFAR.config
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
{
|
||||||
|
"super_type" : ["str", "nasnet-super"],
|
||||||
|
"name" : ["str", "GDAS"],
|
||||||
|
"C" : ["int", "16" ],
|
||||||
|
"N" : ["int", "2" ],
|
||||||
|
"steps" : ["int", "4" ],
|
||||||
|
"multiplier" : ["int", "4" ],
|
||||||
|
"stem_multiplier" : ["int", "3" ]
|
||||||
|
}
|
13
configs/search-opts/DARTS-NASNet-CIFAR.config
Normal file
13
configs/search-opts/DARTS-NASNet-CIFAR.config
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
{
|
||||||
|
"scheduler": ["str", "cos"],
|
||||||
|
"LR" : ["float", "0.025"],
|
||||||
|
"eta_min" : ["float", "0.001"],
|
||||||
|
"epochs" : ["int", "50"],
|
||||||
|
"warmup" : ["int", "0"],
|
||||||
|
"optim" : ["str", "SGD"],
|
||||||
|
"decay" : ["float", "0.0005"],
|
||||||
|
"momentum" : ["float", "0.9"],
|
||||||
|
"nesterov" : ["bool", "1"],
|
||||||
|
"criterion": ["str", "Softmax"],
|
||||||
|
"batch_size": ["int", "256"]
|
||||||
|
}
|
@ -46,13 +46,13 @@ If you want to train the searched architecture found by the above scripts, you n
|
|||||||
### Searching on a small search space (NAS-Bench-201)
|
### Searching on a small search space (NAS-Bench-201)
|
||||||
The GDAS searching codes on a small search space:
|
The GDAS searching codes on a small search space:
|
||||||
```
|
```
|
||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1
|
||||||
```
|
```
|
||||||
|
|
||||||
The baseline searching codes are DARTS:
|
The baseline searching codes are DARTS:
|
||||||
```
|
```
|
||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 1 -1
|
||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1
|
||||||
```
|
```
|
||||||
|
|
||||||
**After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes:
|
**After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes:
|
||||||
|
@ -32,7 +32,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN
|
|||||||
|
|
||||||
The searching codes of SETN on a small search space (NAS-Bench-201).
|
The searching codes of SETN on a small search space (NAS-Bench-201).
|
||||||
```
|
```
|
||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 1 -1
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
@ -10,6 +10,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1
|
|||||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**Run the first-order DARTS on the NASNet search space**:
|
||||||
|
```
|
||||||
|
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1
|
||||||
|
```
|
||||||
|
|
||||||
# Citation
|
# Citation
|
||||||
|
|
||||||
```
|
```
|
||||||
|
@ -112,10 +112,14 @@ def main(xargs):
|
|||||||
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||||
|
|
||||||
search_space = get_search_spaces('cell', xargs.search_space_name)
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||||
|
if xargs.model_config is None:
|
||||||
model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells,
|
model_config = dict2config({'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells,
|
||||||
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
|
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
|
||||||
'space' : search_space,
|
'space' : search_space,
|
||||||
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
|
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
|
||||||
|
else:
|
||||||
|
model_config = load_config(xargs.model_config, {'num_classes': class_num, 'space' : search_space,
|
||||||
|
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
|
||||||
search_model = get_cell_based_tiny_net(model_config)
|
search_model = get_cell_based_tiny_net(model_config)
|
||||||
logger.log('search-model :\n{:}'.format(search_model))
|
logger.log('search-model :\n{:}'.format(search_model))
|
||||||
|
|
||||||
@ -213,12 +217,13 @@ if __name__ == '__main__':
|
|||||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||||
# channels and number-of-cells
|
# channels and number-of-cells
|
||||||
parser.add_argument('--config_path', type=str, help='The config path.')
|
|
||||||
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||||
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||||
parser.add_argument('--channel', type=int, help='The number of channels.')
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||||
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||||
parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
|
parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
|
||||||
|
parser.add_argument('--config_path', type=str, help='The config path.')
|
||||||
|
parser.add_argument('--model_config', type=str, help='The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.')
|
||||||
# architecture leraning rate
|
# architecture leraning rate
|
||||||
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
||||||
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
||||||
|
@ -10,6 +10,7 @@ from .search_model_random import TinyNetworkRANDOM
|
|||||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||||
# NASNet-based macro structure
|
# NASNet-based macro structure
|
||||||
from .search_model_gdas_nasnet import NASNetworkGDAS
|
from .search_model_gdas_nasnet import NASNetworkGDAS
|
||||||
|
from .search_model_darts_nasnet import NASNetworkDARTS
|
||||||
|
|
||||||
|
|
||||||
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
|
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
|
||||||
@ -19,4 +20,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
|
|||||||
'ENAS' : TinyNetworkENAS,
|
'ENAS' : TinyNetworkENAS,
|
||||||
'RANDOM' : TinyNetworkRANDOM}
|
'RANDOM' : TinyNetworkRANDOM}
|
||||||
|
|
||||||
nasnet_super_nets = {'GDAS' : NASNetworkGDAS}
|
nasnet_super_nets = {'GDAS' : NASNetworkGDAS,
|
||||||
|
'DARTS': NASNetworkDARTS}
|
||||||
|
@ -131,10 +131,12 @@ class MixedOp(nn.Module):
|
|||||||
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
||||||
self._ops.append(op)
|
self._ops.append(op)
|
||||||
|
|
||||||
def forward(self, x, weights, index):
|
def forward_gdas(self, x, weights, index):
|
||||||
#return sum(w * op(x) for w, op in zip(weights, self._ops))
|
|
||||||
return self._ops[index](x) * weights[index]
|
return self._ops[index](x) * weights[index]
|
||||||
|
|
||||||
|
def forward_darts(self, x, weights):
|
||||||
|
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||||
|
|
||||||
|
|
||||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||||
class NASNetSearchCell(nn.Module):
|
class NASNetSearchCell(nn.Module):
|
||||||
@ -173,7 +175,23 @@ class NASNetSearchCell(nn.Module):
|
|||||||
op = self.edges[ node_str ]
|
op = self.edges[ node_str ]
|
||||||
weights = weightss[ self.edge2index[node_str] ]
|
weights = weightss[ self.edge2index[node_str] ]
|
||||||
index = indexs[ self.edge2index[node_str] ].item()
|
index = indexs[ self.edge2index[node_str] ].item()
|
||||||
clist.append( op(h, weights, index) )
|
clist.append( op.forward_gdas(h, weights, index) )
|
||||||
|
states.append( sum(clist) )
|
||||||
|
|
||||||
|
return torch.cat(states[-self._multiplier:], dim=1)
|
||||||
|
|
||||||
|
def forward_darts(self, s0, s1, weightss):
|
||||||
|
s0 = self.preprocess0(s0)
|
||||||
|
s1 = self.preprocess1(s1)
|
||||||
|
|
||||||
|
states = [s0, s1]
|
||||||
|
for i in range(self._steps):
|
||||||
|
clist = []
|
||||||
|
for j, h in enumerate(states):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
op = self.edges[ node_str ]
|
||||||
|
weights = weightss[ self.edge2index[node_str] ]
|
||||||
|
clist.append( op.forward_darts(h, weights) )
|
||||||
states.append( sum(clist) )
|
states.append( sum(clist) )
|
||||||
|
|
||||||
return torch.cat(states[-self._multiplier:], dim=1)
|
return torch.cat(states[-self._multiplier:], dim=1)
|
||||||
|
107
lib/models/cell_searchs/search_model_darts_nasnet.py
Normal file
107
lib/models/cell_searchs/search_model_darts_nasnet.py
Normal file
@ -0,0 +1,107 @@
|
|||||||
|
####################
|
||||||
|
# DARTS, ICLR 2019 #
|
||||||
|
####################
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from copy import deepcopy
|
||||||
|
from .search_cells import NASNetSearchCell as SearchCell
|
||||||
|
from .genotypes import Structure
|
||||||
|
|
||||||
|
|
||||||
|
# The macro structure is based on NASNet
|
||||||
|
class NASNetworkDARTS(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
|
||||||
|
super(NASNetworkDARTS, self).__init__()
|
||||||
|
self._C = C
|
||||||
|
self._layerN = N
|
||||||
|
self._steps = steps
|
||||||
|
self._multiplier = multiplier
|
||||||
|
self.stem = nn.Sequential(
|
||||||
|
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||||
|
nn.BatchNorm2d(C*stem_multiplier))
|
||||||
|
|
||||||
|
# config for each layer
|
||||||
|
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||||
|
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||||
|
|
||||||
|
num_edge, edge2index = None, None
|
||||||
|
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||||
|
|
||||||
|
self.cells = nn.ModuleList()
|
||||||
|
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||||
|
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||||
|
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||||
|
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||||
|
self.cells.append( cell )
|
||||||
|
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
|
||||||
|
self.op_names = deepcopy( search_space )
|
||||||
|
self._Layer = len(self.cells)
|
||||||
|
self.edge2index = edge2index
|
||||||
|
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||||
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.classifier = nn.Linear(C_prev, num_classes)
|
||||||
|
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||||
|
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||||
|
|
||||||
|
def get_weights(self):
|
||||||
|
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||||
|
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||||
|
xlist+= list( self.classifier.parameters() )
|
||||||
|
return xlist
|
||||||
|
|
||||||
|
def get_alphas(self):
|
||||||
|
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||||
|
|
||||||
|
def show_alphas(self):
|
||||||
|
with torch.no_grad():
|
||||||
|
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
|
||||||
|
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
|
||||||
|
return '{:}\n{:}'.format(A, B)
|
||||||
|
|
||||||
|
def get_message(self):
|
||||||
|
string = self.extra_repr()
|
||||||
|
for i, cell in enumerate(self.cells):
|
||||||
|
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||||
|
return string
|
||||||
|
|
||||||
|
def extra_repr(self):
|
||||||
|
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||||
|
|
||||||
|
def genotype(self):
|
||||||
|
def _parse(weights):
|
||||||
|
gene = []
|
||||||
|
for i in range(self._steps):
|
||||||
|
edges = []
|
||||||
|
for j in range(2+i):
|
||||||
|
node_str = '{:}<-{:}'.format(i, j)
|
||||||
|
ws = weights[ self.edge2index[node_str] ]
|
||||||
|
for k, op_name in enumerate(self.op_names):
|
||||||
|
if op_name == 'none': continue
|
||||||
|
edges.append( (op_name, j, ws[k]) )
|
||||||
|
edges = sorted(edges, key=lambda x: -x[-1])
|
||||||
|
selected_edges = edges[:2]
|
||||||
|
gene.append( tuple(selected_edges) )
|
||||||
|
return gene
|
||||||
|
with torch.no_grad():
|
||||||
|
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
|
||||||
|
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
|
||||||
|
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
|
||||||
|
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
|
||||||
|
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
|
||||||
|
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
|
||||||
|
|
||||||
|
s0 = s1 = self.stem(inputs)
|
||||||
|
for i, cell in enumerate(self.cells):
|
||||||
|
if cell.reduction: ww = reduce_w
|
||||||
|
else : ww = normal_w
|
||||||
|
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
|
||||||
|
out = self.lastact(s1)
|
||||||
|
out = self.global_pooling( out )
|
||||||
|
out = out.view(out.size(0), -1)
|
||||||
|
logits = self.classifier(out)
|
||||||
|
|
||||||
|
return out, logits
|
41
scripts-search/DARTS1V-search-NASNet-space.sh
Normal file
41
scripts-search/DARTS1V-search-NASNet-space.sh
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# bash ./scripts-search/DARTS1V-search-NASNet-space.sh cifar10 -1
|
||||||
|
echo script name: $0
|
||||||
|
echo $# arguments
|
||||||
|
if [ "$#" -ne 2 ] ;then
|
||||||
|
echo "Input illegal number of parameters " $#
|
||||||
|
echo "Need 2 parameters for dataset, and seed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
if [ "$TORCH_HOME" = "" ]; then
|
||||||
|
echo "Must set TORCH_HOME envoriment variable for data dir saving"
|
||||||
|
exit 1
|
||||||
|
else
|
||||||
|
echo "TORCH_HOME : $TORCH_HOME"
|
||||||
|
fi
|
||||||
|
|
||||||
|
dataset=$1
|
||||||
|
BN=1
|
||||||
|
seed=$2
|
||||||
|
channel=16
|
||||||
|
num_cells=5
|
||||||
|
max_nodes=4
|
||||||
|
space=darts
|
||||||
|
|
||||||
|
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
|
||||||
|
data_path="$TORCH_HOME/cifar.python"
|
||||||
|
else
|
||||||
|
data_path="$TORCH_HOME/cifar.python/ImageNet16"
|
||||||
|
fi
|
||||||
|
|
||||||
|
save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}-BN${BN}
|
||||||
|
|
||||||
|
OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \
|
||||||
|
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
|
||||||
|
--dataset ${dataset} --data_path ${data_path} \
|
||||||
|
--search_space_name ${space} \
|
||||||
|
--config_path configs/search-opts/DARTS-NASNet-CIFAR.config \
|
||||||
|
--model_config configs/search-archs/GDAS-NASNet-CIFAR.config \
|
||||||
|
--track_running_stats ${BN} \
|
||||||
|
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
|
||||||
|
--workers 4 --print_freq 200 --rand_seed ${seed}
|
Loading…
Reference in New Issue
Block a user