update hp of BOHB

This commit is contained in:
D-X-Y 2020-01-02 16:49:16 +11:00
parent dd6cf5a9c5
commit db44e56fb6
4 changed files with 20 additions and 11 deletions

View File

@ -148,6 +148,7 @@ def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True, n
api = meta_file
else:
api = API(str(meta_file))
cifar10_currs = []
cifar10_valid = []
cifar10_test = []
cifar100_valid = []
@ -156,6 +157,9 @@ def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True, n
imagenet_valid = []
for idx, arch in enumerate(api):
results = api.get_more_info(idx, 'cifar10-valid' , test_epoch-1, use_less_or_not, is_rand)
cifar10_currs.append( results['valid-accuracy'] )
# --->>>>>
results = api.get_more_info(idx, 'cifar10-valid' , None, False, is_rand)
cifar10_valid.append( results['valid-accuracy'] )
results = api.get_more_info(idx, 'cifar10' , None, False, is_rand)
cifar10_test.append( results['test-accuracy'] )
@ -168,8 +172,8 @@ def check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand=True, n
def get_cor(A, B):
return float(np.corrcoef(A, B)[0,1])
cors = []
for basestr, xlist in zip(['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'], [cifar10_test, cifar100_valid, cifar100_test, imagenet_valid, imagenet_test]):
correlation = get_cor(cifar10_valid, xlist)
for basestr, xlist in zip(['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T'], [cifar10_valid, cifar10_test, cifar100_valid, cifar100_test, imagenet_valid, imagenet_test]):
correlation = get_cor(cifar10_currs, xlist)
if need_print: print ('With {:3d}/{:}-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, '012' if use_less_or_not else '200', basestr, correlation))
cors.append( correlation )
#print ('With {:3d}/200-epochs-training, the correlation between cifar10-valid and {:} is : {:}'.format(test_epoch, basestr, get_cor(cifar10_valid_200, xlist)))
@ -183,7 +187,8 @@ def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand):
for i in tqdm(range(100)):
x = check_cor_for_bandit(meta_file, test_epoch, use_less_or_not, is_rand, False)
corrs.append( x )
xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T']
#xstrs = ['CIFAR-010', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T']
xstrs = ['C-010-V', 'C-010-T', 'C-100-V', 'C-100-T', 'I16-V', 'I16-T']
correlations = np.array(corrs)
print('------>>>>>>>> {:03d}/{:} >>>>>>>> ------'.format(test_epoch, '012' if use_less_or_not else '200'))
for idx, xstr in enumerate(xstrs):
@ -213,5 +218,6 @@ if __name__ == '__main__':
check_cor_for_bandit_v2(api, 24, False, True)
check_cor_for_bandit_v2(api, 100, False, True)
check_cor_for_bandit_v2(api, 150, False, True)
check_cor_for_bandit_v2(api, 175, False, True)
check_cor_for_bandit_v2(api, 200, False, True)
print('----')

View File

@ -5,6 +5,7 @@
##################################################
import os, sys, time, argparse, collections
from tqdm import tqdm
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
@ -420,7 +421,7 @@ def just_show(api):
'ENAS' : [14340.2, 13817.3, 14018.9]}
for xkey, xlist in xtimes.items():
xlist = np.array(xlist)
print ('{:4s} : mean-time={:.1f} s'.format(xkey, xlist.mean()))
print ('{:4s} : mean-time={:.2f} s'.format(xkey, xlist.mean()))
xpaths = {'RSPS' : 'output/search-cell-nas-bench-102/RANDOM-NAS-cifar10/checkpoint/',
'DARTS-V1': 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/',
@ -546,6 +547,7 @@ if __name__ == '__main__':
#visualize_relative_ranking(vis_save_dir)
api = API(args.api_path)
"""
for x_maxs in [50, 250]:
show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'cifar10' , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
@ -553,12 +555,11 @@ if __name__ == '__main__':
show_nas_sharing_w(api, 'cifar100' , 'x-test' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'ImageNet16-120', 'x-test' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
"""
just_show(api)
"""
plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1))
plot_results_nas(api, 'cifar10' , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1))
plot_results_nas(api, 'cifar100' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3))
plot_results_nas(api, 'cifar100' , 'x-test' , vis_save_dir, 'nas-com.pdf', (55,75, 3))
plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3))
plot_results_nas(api, 'ImageNet16-120', 'x-test' , vis_save_dir, 'nas-com.pdf', (35,50, 3))
"""

View File

@ -184,7 +184,7 @@ def main(xargs, nas_bench):
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
logger.close()
return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
@ -219,12 +219,14 @@ if __name__ == '__main__':
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
save_dir, all_indexes, num, all_times = None, [], 500, []
for i in range(num):
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
args.rand_seed = random.randint(1, 100000)
save_dir, index = main(args, nas_bench)
save_dir, index, ctime = main(args, nas_bench)
all_indexes.append( index )
all_times.append( ctime )
print ('\n average time : {:.3f} s'.format(sum(all_times)/len(all_times)))
torch.save(all_indexes, save_dir / 'results.pth')
else:
main(args, nas_bench)

View File

@ -29,5 +29,5 @@ OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \
--search_space_name ${space} \
--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
--time_budget 12000 \
--n_iters 28 --num_samples 64 --random_fraction .33 --bandwidth_factor 3 \
--n_iters 50 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 \
--workers 4 --print_freq 200 --rand_seed ${seed}