Updates
This commit is contained in:
		| @@ -4,8 +4,7 @@ | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import os | ||||
| import math | ||||
| import os, math, random | ||||
| from collections import OrderedDict | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| @@ -37,7 +36,7 @@ from qlib.data.dataset import DatasetH | ||||
| from qlib.data.dataset.handler import DataHandlerLP | ||||
|  | ||||
|  | ||||
| default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1) | ||||
| default_net_config = dict(d_feat=6, embed_dim=48, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.1) | ||||
|  | ||||
| default_opt_config = dict( | ||||
|     epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4 | ||||
| @@ -50,7 +49,7 @@ class QuantTransformer(Model): | ||||
|     def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs): | ||||
|         # Set logger. | ||||
|         self.logger = get_module_logger("QuantTransformer") | ||||
|         self.logger.info("QuantTransformer pytorch version...") | ||||
|         self.logger.info("QuantTransformer PyTorch version...") | ||||
|  | ||||
|         # set hyper-parameters. | ||||
|         self.net_config = net_config or default_net_config | ||||
| @@ -75,12 +74,16 @@ class QuantTransformer(Model): | ||||
|         ) | ||||
|  | ||||
|         if self.seed is not None: | ||||
|             random.seed(self.seed) | ||||
|             np.random.seed(self.seed) | ||||
|             torch.manual_seed(self.seed) | ||||
|             if self.use_gpu: | ||||
|                 torch.cuda.manual_seed(self.seed) | ||||
|                 torch.cuda.manual_seed_all(self.seed) | ||||
|  | ||||
|         self.model = TransformerModel( | ||||
|             d_feat=self.net_config["d_feat"], | ||||
|             embed_dim=self.net_config["hidden_size"], | ||||
|             embed_dim=self.net_config["embed_dim"], | ||||
|             depth=self.net_config["depth"], | ||||
|             pos_drop=self.net_config["pos_drop"], | ||||
|         ) | ||||
| @@ -99,7 +102,7 @@ class QuantTransformer(Model): | ||||
|  | ||||
|     @property | ||||
|     def use_gpu(self): | ||||
|         self.device == torch.device("cpu") | ||||
|         return self.device != torch.device("cpu") | ||||
|  | ||||
|     def loss_fn(self, pred, label): | ||||
|         mask = ~torch.isnan(label) | ||||
| @@ -176,7 +179,7 @@ class QuantTransformer(Model): | ||||
|             _prepare_loader(test_dataset, False), | ||||
|         ) | ||||
|  | ||||
|         save_path = get_or_create_path(save_path) | ||||
|         save_path = get_or_create_path(save_path, return_dir=True) | ||||
|         self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path)) | ||||
|  | ||||
|         def _internal_test(ckp_epoch=None, results_dict=None): | ||||
| @@ -286,11 +289,11 @@ class QuantTransformer(Model): | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|  | ||||
|     def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): | ||||
|         super(Attention, self).__init__() | ||||
|         self.num_heads = num_heads | ||||
|         head_dim = dim // num_heads | ||||
|         # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
|         self.scale = qk_scale or math.sqrt(head_dim) | ||||
|  | ||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
| @@ -314,6 +317,7 @@ class Attention(nn.Module): | ||||
|  | ||||
|  | ||||
| class Block(nn.Module): | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         dim, | ||||
| @@ -345,6 +349,7 @@ class Block(nn.Module): | ||||
|  | ||||
|  | ||||
| class SimpleEmbed(nn.Module): | ||||
|  | ||||
|     def __init__(self, d_feat, embed_dim): | ||||
|         super(SimpleEmbed, self).__init__() | ||||
|         self.d_feat = d_feat | ||||
| @@ -361,18 +366,19 @@ class SimpleEmbed(nn.Module): | ||||
| class TransformerModel(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         d_feat: int, | ||||
|         d_feat: int = 6, | ||||
|         embed_dim: int = 64, | ||||
|         depth: int = 4, | ||||
|         num_heads: int = 4, | ||||
|         mlp_ratio: float = 4.0, | ||||
|         qkv_bias: bool = True, | ||||
|         qk_scale: Optional[float] = None, | ||||
|         pos_drop=0.0, | ||||
|         mlp_drop_rate=0.0, | ||||
|         attn_drop_rate=0.0, | ||||
|         drop_path_rate=0.0, | ||||
|         norm_layer=None, | ||||
|         pos_drop: float = 0.0, | ||||
|         mlp_drop_rate: float = 0.0, | ||||
|         attn_drop_rate: float = 0.0, | ||||
|         drop_path_rate: float = 0.0, | ||||
|         norm_layer: Optional[nn.Module] = None, | ||||
|         max_seq_len: int = 65, | ||||
|     ): | ||||
|         """ | ||||
|         Args: | ||||
| @@ -397,7 +403,7 @@ class TransformerModel(nn.Module): | ||||
|         self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|  | ||||
|         self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|         self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop) | ||||
|         self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop) | ||||
|  | ||||
|         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|         self.blocks = nn.ModuleList( | ||||
|   | ||||
		Reference in New Issue
	
	Block a user