Add MobileNetV2
This commit is contained in:
		
							
								
								
									
										24
									
								
								exps/experimental/test-flops.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								exps/experimental/test-flops.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | |||||||
|  | import sys, time, random, argparse | ||||||
|  | from copy import deepcopy | ||||||
|  | import torchvision.models as models | ||||||
|  | from pathlib import Path | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | from utils import get_model_infos | ||||||
|  | #from models.ImageNet_MobileNetV2 import MobileNetV2 | ||||||
|  | from torchvision.models.mobilenet import MobileNetV2 | ||||||
|  |  | ||||||
|  | def main(width_mult): | ||||||
|  |   # model = MobileNetV2(1001, width_mult, 32, 1280, 'InvertedResidual', 0.2) | ||||||
|  |   model = MobileNetV2(width_mult=width_mult) | ||||||
|  |   print(model) | ||||||
|  |   flops, params = get_model_infos(model, (2, 3, 224, 224)) | ||||||
|  |   print('FLOPs : {:}'.format(flops)) | ||||||
|  |   print('Params : {:}'.format(params)) | ||||||
|  |   print('-'*50) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   main(1.0) | ||||||
|  |   main(1.4) | ||||||
							
								
								
									
										101
									
								
								lib/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								lib/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,101 @@ | |||||||
|  | # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||||
|  | from torch import nn | ||||||
|  | from .initialization import initialize_resnet | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ConvBNReLU(nn.Module): | ||||||
|  |   def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||||
|  |     super(ConvBNReLU, self).__init__() | ||||||
|  |     padding = (kernel_size - 1) // 2 | ||||||
|  |     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||||
|  |     self.bn   = nn.BatchNorm2d(out_planes) | ||||||
|  |     self.relu = nn.ReLU6(inplace=True) | ||||||
|  |    | ||||||
|  |   def forward(self, x): | ||||||
|  |     out = self.conv( x ) | ||||||
|  |     out = self.bn  ( out ) | ||||||
|  |     out = self.relu( out ) | ||||||
|  |     return out | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class InvertedResidual(nn.Module): | ||||||
|  |   def __init__(self, inp, oup, stride, expand_ratio): | ||||||
|  |     super(InvertedResidual, self).__init__() | ||||||
|  |     self.stride = stride | ||||||
|  |     assert stride in [1, 2] | ||||||
|  |  | ||||||
|  |     hidden_dim = int(round(inp * expand_ratio)) | ||||||
|  |     self.use_res_connect = self.stride == 1 and inp == oup | ||||||
|  |  | ||||||
|  |     layers = [] | ||||||
|  |     if expand_ratio != 1: | ||||||
|  |       # pw | ||||||
|  |       layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||||
|  |     layers.extend([ | ||||||
|  |       # dw | ||||||
|  |       ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||||
|  |       # pw-linear | ||||||
|  |       nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||||
|  |       nn.BatchNorm2d(oup), | ||||||
|  |     ]) | ||||||
|  |     self.conv = nn.Sequential(*layers) | ||||||
|  |  | ||||||
|  |   def forward(self, x): | ||||||
|  |     if self.use_res_connect: | ||||||
|  |       return x + self.conv(x) | ||||||
|  |     else: | ||||||
|  |       return self.conv(x) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class MobileNetV2(nn.Module): | ||||||
|  |   def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout): | ||||||
|  |     super(MobileNetV2, self).__init__() | ||||||
|  |     if block_name == 'InvertedResidual': | ||||||
|  |       block = InvertedResidual | ||||||
|  |     else: | ||||||
|  |       raise ValueError('invalid block name : {:}'.format(block_name)) | ||||||
|  |     inverted_residual_setting = [ | ||||||
|  |       # t, c,  n, s | ||||||
|  |       [1, 16 , 1, 1], | ||||||
|  |       [6, 24 , 2, 2], | ||||||
|  |       [6, 32 , 3, 2], | ||||||
|  |       [6, 64 , 4, 2], | ||||||
|  |       [6, 96 , 3, 1], | ||||||
|  |       [6, 160, 3, 2], | ||||||
|  |       [6, 320, 1, 1], | ||||||
|  |     ] | ||||||
|  |  | ||||||
|  |     # building first layer | ||||||
|  |     input_channel = int(input_channel * width_mult) | ||||||
|  |     self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||||
|  |     features = [ConvBNReLU(3, input_channel, stride=2)] | ||||||
|  |     # building inverted residual blocks | ||||||
|  |     for t, c, n, s in inverted_residual_setting: | ||||||
|  |       output_channel = int(c * width_mult) | ||||||
|  |       for i in range(n): | ||||||
|  |         stride = s if i == 0 else 1 | ||||||
|  |         features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | ||||||
|  |         input_channel = output_channel | ||||||
|  |     # building last several layers | ||||||
|  |     features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||||
|  |     # make it nn.Sequential | ||||||
|  |     self.features = nn.Sequential(*features) | ||||||
|  |  | ||||||
|  |     # building classifier | ||||||
|  |     self.classifier = nn.Sequential( | ||||||
|  |       nn.Dropout(dropout), | ||||||
|  |       nn.Linear(self.last_channel, num_classes), | ||||||
|  |     ) | ||||||
|  |     self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout) | ||||||
|  |  | ||||||
|  |     # weight initialization | ||||||
|  |     self.apply( initialize_resnet ) | ||||||
|  |  | ||||||
|  |   def get_message(self): | ||||||
|  |     return self.message | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |     features = self.features(inputs) | ||||||
|  |     vectors  = features.mean([2, 3]) | ||||||
|  |     predicts = self.classifier(vectors) | ||||||
|  |     return features, predicts | ||||||
| @@ -110,8 +110,11 @@ def get_imagenet_models(config): | |||||||
|   super_type = getattr(config, 'super_type', 'basic') |   super_type = getattr(config, 'super_type', 'basic') | ||||||
|   if super_type == 'basic': |   if super_type == 'basic': | ||||||
|     from .ImagenetResNet import ResNet |     from .ImagenetResNet import ResNet | ||||||
|  |     from .ImageNet_MobileNetV2 import MobileNetV2 | ||||||
|     if config.arch == 'resnet': |     if config.arch == 'resnet': | ||||||
|       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) |       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) | ||||||
|  |     elif config.arch == 'mobilenet_v2': | ||||||
|  |       return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout) | ||||||
|     else: |     else: | ||||||
|       raise ValueError('invalid arch : {:}'.format( config.arch )) |       raise ValueError('invalid arch : {:}'.format( config.arch )) | ||||||
|   elif super_type.startswith('infer'): # NAS searched architecture |   elif super_type.startswith('infer'): # NAS searched architecture | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user