update NAS-Bench
This commit is contained in:
		| @@ -3,10 +3,8 @@ | ||||
| ##################################################### | ||||
| # python exps/NAS-Bench-201/check.py --base_save_dir  | ||||
| ##################################################### | ||||
| import os, sys, time, argparse, collections | ||||
| from shutil import copyfile | ||||
| import sys, time, argparse, collections | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| from collections import defaultdict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
|   | ||||
							
								
								
									
										39
									
								
								exps/NAS-Bench-201/show-best.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										39
									
								
								exps/NAS-Bench-201/show-best.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,39 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # | ||||
| ################################################################################################ | ||||
| # python exps/NAS-Bench-201/show-best.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth # | ||||
| ################################################################################################ | ||||
| import os, sys, time, glob, random, argparse | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api  import NASBench201API as API | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--api_path',  type=str, default=None,                                         help='The path to the NAS-Bench-201 benchmark file.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   meta_file = Path(args.api_path) | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|  | ||||
|   api = API(str(meta_file)) | ||||
|  | ||||
|   # This will show the results of the best architecture based on the validation set of each dataset. | ||||
|   arch_index, accuracy = api.find_best('cifar10-valid', 'x-valid', None, None, False) | ||||
|   print('FOR CIFAR-010, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
|  | ||||
|   arch_index, accuracy = api.find_best('cifar100', 'x-valid', None, None, False) | ||||
|   print('FOR CIFAR-100, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
|  | ||||
|   arch_index, accuracy = api.find_best('ImageNet16-120', 'x-valid', None, None, False) | ||||
|   print('FOR ImageNet16-120, using the hyper-parameters with 200 training epochs :::') | ||||
|   print('arch-index={:5d}, arch={:}'.format(arch_index, api.arch(arch_index))) | ||||
|   api.show(arch_index) | ||||
|   print('') | ||||
							
								
								
									
										196
									
								
								exps/NAS-Bench-201/xshapes.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										196
									
								
								exps/NAS-Bench-201/xshapes.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,196 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from PIL     import ImageFile | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from procedures   import bench_evaluate_for_seed | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(channels: Text, datasets: List[Text], xpaths: List[Text], | ||||
|                           splits: List[Text], config_path: Text, seed: int, workers: int, logger): | ||||
|   machine_info = get_machine_info() | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the datasets | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # train valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configurature | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, dict(class_num=class_num, xshape=xshape), logger) | ||||
|     # check whether use splited validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| | ||||
|     # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set | ||||
|     genotype = '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|' | ||||
|     arch_config = dict2config(dict(name='infer.shape.tiny', channels=channels, genotype=genotype, num_classes=class_num), None) | ||||
|     results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir: Path, workers: int, datasets: List[Text], xpaths: List[Text], | ||||
|          splits: List[int], seeds: List[int], nets: List[str], opt_config: Dict[Text, Any], | ||||
|          srange: tuple, cover_mode: bool): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads(workers) | ||||
|  | ||||
|   log_dir = save_dir / 'logs' | ||||
|   log_dir.mkdir(parents=True, exist_ok=True) | ||||
|   logger = Logger(str(log_dir), 0, False) | ||||
|  | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-' * 100) | ||||
|  | ||||
|   logger.log( | ||||
|     'Start evaluating range =: {:06d} - {:06d} / {:06d} with cover-mode={:}'.format(srange[0], srange[1], len(nets), | ||||
|                                                                                     cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log( | ||||
|       '--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> optimization config : {:}'.format(opt_config)) | ||||
|   to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     channelstr = nets[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}'.format(time_string(), i, | ||||
|                        len(to_evaluate_indexes), index, len(nets), seeds, '-' * 15)) | ||||
|     logger.log('{:} {:} {:}'.format('-' * 15, channelstr, '-' * 15)) | ||||
|  | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = save_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else: | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}]  ===>>> {:}'.format(time_string(), i, | ||||
|                     len(to_evaluate_indexes), index, len(nets), seeds, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)) | ||||
|     logger.log('This arch costs : {:}'.format(convert_secs2time(epoch_time.val, True))) | ||||
|     logger.log('{:}'.format('*' * 100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*' * 10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len( | ||||
|       to_evaluate_indexes), index, len(nets), need_time), '*' * 10)) | ||||
|     logger.log('{:}'.format('*' * 100)) | ||||
|  | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def traverse_net(candidates: List[int], N: int): | ||||
|   nets = [''] | ||||
|   for i in range(N): | ||||
|     new_nets = [] | ||||
|     for net in nets: | ||||
|       for C in candidates: | ||||
|         new_nets.append(str(C) if net == '' else "{:}:{:}".format(net,C)) | ||||
|     nets = new_nets | ||||
|   return nets | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode',        type=str,   required=True, choices=['new', 'cover'], help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str,   default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC',  type=int,   nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers',  type=int,   default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N',     type=int,   default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int,   default=8,      help='The number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=str,   required=True,  help='The range of models to be evaluated') | ||||
|   parser.add_argument('--datasets',    type=str,   nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int,   nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--hyper',       type=str,   default='12', choices=['12', '90'], help='The tag for hyper-parameters.') | ||||
|   parser.add_argument('--seeds'  ,     type=int,   nargs='+',      help='The range of models to be evaluated') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|  | ||||
|   opt_config = './configs/nas-benchmark/hyper-opts/{:}E.config'.format(args.hyper) | ||||
|   if not os.path.isfile(opt_config): raise ValueError('{:} is not a file.'.format(opt_config)) | ||||
|   save_dir = Path(args.save_dir) / 'raw-data-{:}'.format(args.hyper) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   if not isinstance(args.srange, str) or len(args.srange.split('-')) != 2: | ||||
|     raise ValueError('Invalid scheme for {:}'.format(args.srange)) | ||||
|   srange = args.srange.split('-') | ||||
|   srange = (int(srange[0]), int(srange[1])) | ||||
|   assert 0 <= srange[0] <= srange[1] < args.check_N, '{:} vs {:} vs {:}'.format(srange[0], srange[1], args.check_N) | ||||
|  | ||||
|   assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|   assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) | ||||
|   assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|    | ||||
|   main(save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, | ||||
|        srange, args.mode == 'cover') | ||||
		Reference in New Issue
	
	Block a user