diff --git a/exps/NAS-Bench-201/test-weights.py b/exps/NAS-Bench-201/test-weights.py index 2991b39..72b92bd 100644 --- a/exps/NAS-Bench-201/test-weights.py +++ b/exps/NAS-Bench-201/test-weights.py @@ -3,13 +3,15 @@ ############################################################################################### # Before run these commands, the files must be properly put. # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 -# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 +# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 +# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 1 ############################################################################################### -import os, sys, time, glob, random, argparse +import os, gc, sys, time, glob, random, argparse import numpy as np import torch import torch.nn as nn from pathlib import Path +from collections import OrderedDict from tqdm import tqdm lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) @@ -24,30 +26,48 @@ def get_cor(A, B): return float(np.corrcoef(A, B)[0,1]) +def tostr(accdict, norms): + xstr = [] + for key, accs in accdict.items(): + cor = get_cor(accs, norms) + xstr.append('{:}: {:.3f}'.format(key, cor)) + return ' '.join(xstr) + + def evaluate(api, weight_dir, data: str, use_12epochs_result: bool, valid_or_test: bool): + print('\nEvaluate dataset={:}'.format(data)) norms, accs = [], [] - for idx in tqdm(range(len(api))): + final_accs = OrderedDict({'cifar10-valid': [], 'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) + for idx in range(len(api)): info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) if valid_or_test: accs.append(info['valid-accuracy']) else: accs.append(info['test-accuracy']) + for key in final_accs.keys(): + info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) + final_accs[key].append(info['test-accuracy']) config = api.get_net_config(idx, data) net = get_cell_based_tiny_net(config) api.reload(weight_dir, idx) params = api.get_net_param(idx, data, None) cur_norms = [] for seed, param in params.items(): - net.load_state_dict(param) - _, summary = weight_watcher.analyze(net, alphas=False) - cur_norms.append( summary['lognorm'] ) + with torch.no_grad(): + net.load_state_dict(param) + _, summary = weight_watcher.analyze(net, alphas=False) + cur_norms.append( summary['lognorm'] ) norms.append( float(np.mean(cur_norms)) ) api.clear_params(idx, use_12epochs_result) - correlation = get_cor(norms, accs) - print('For {:} with {:} epochs on {:} : the correlation is {:}'.format(data, 12 if use_12epochs_result else 200, 'valid' if valid_or_test else 'test', correlation)) + if idx % 200 == 199 or idx + 1 == len(api): + correlation = get_cor(norms, accs) + head = '{:05d}/{:05d}'.format(idx, len(api)) + stem = tostr(final_accs, norms) + print('{:} {:} {:} with {:} epochs on {:} : the correlation is {:.3f}. {:}'.format(time_string(), head, data, 12 if use_12epochs_result else 200, 'valid' if valid_or_test else 'test', correlation, stem)) + torch.cuda.empty_cache() ; gc.collect() -def main(meta_file: str, weight_dir, save_dir): +def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result, valid_or_test): api = API(meta_file) datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] print(time_string() + ' ' + '='*50) @@ -62,7 +82,8 @@ def main(meta_file: str, weight_dir, save_dir): print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) print(time_string() + ' ' + '='*50) - evaluate(api, weight_dir, 'cifar10-valid', False, True) + #evaluate(api, weight_dir, 'cifar10-valid', False, True) + evaluate(api, weight_dir, xdata, use_12epochs_result, valid_or_test) print('{:} finish this test.'.format(time_string())) @@ -71,6 +92,9 @@ if __name__ == '__main__': parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') + parser.add_argument('--dataset' , type=str, default=None, help='.') + parser.add_argument('--use_12' , type=int, default=None, help='.') + parser.add_argument('--use_valid', type=int, default=None, help='.') args = parser.parse_args() save_dir = Path(args.save_dir) @@ -80,5 +104,5 @@ if __name__ == '__main__': assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) - main(str(meta_file), weight_dir, save_dir) + main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12), bool(args.use_valid)) diff --git a/lib/nas_201_api/api.py b/lib/nas_201_api/api.py index cd161fa..5a4db25 100644 --- a/lib/nas_201_api/api.py +++ b/lib/nas_201_api/api.py @@ -53,7 +53,7 @@ class NASBench201API(object): if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) self.filename = Path(file_path_or_dict).name - file_path_or_dict = torch.load(file_path_or_dict) + file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu') elif isinstance(file_path_or_dict, dict): file_path_or_dict = copy.deepcopy( file_path_or_dict ) else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) @@ -112,7 +112,7 @@ class NASBench201API(object): xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index)) assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index) assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) - xdata = torch.load(xfile_path) + xdata = torch.load(xfile_path, map_location='cpu') assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] ) self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] ) @@ -723,7 +723,7 @@ class ArchResults(object): def create_from_state_dict(state_dict_or_file): x = ArchResults(-1, -1) if isinstance(state_dict_or_file, str): # a file path - state_dict = torch.load(state_dict_or_file) + state_dict = torch.load(state_dict_or_file, map_location='cpu') elif isinstance(state_dict_or_file, dict): state_dict = state_dict_or_file else: diff --git a/scripts-search/NAS-Bench-201/test-weights.sh b/scripts-search/NAS-Bench-201/test-weights.sh new file mode 100644 index 0000000..b0c111b --- /dev/null +++ b/scripts-search/NAS-Bench-201/test-weights.sh @@ -0,0 +1,20 @@ +#!/bin/bash +# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 1 +echo script name: $0 +echo $# arguments +if [ "$#" -ne 3 ] ;then + echo "Input illegal number of parameters " $# + echo "Need 3 parameters for dataset, use_12_epoch, and use_validation_set" + exit 1 +fi +if [ "$TORCH_HOME" = "" ]; then + echo "Must set TORCH_HOME envoriment variable for data dir saving" + exit 1 +else + echo "TORCH_HOME : $TORCH_HOME" +fi + +OMP_NUM_THREADS=4 python exps/NAS-Bench-201/test-weights.py \ + --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 \ + --dataset $1 \ + --use_12 $2 --use_valid $3