Update REA, REINFORCE, and RANDOM
This commit is contained in:
		| @@ -4,6 +4,8 @@ | ||||
| # Random Search for Hyper-Parameter Optimization, JMLR 2012 ################## | ||||
| ############################################################################## | ||||
| # python ./exps/algos-v2/random_wo_share.py --dataset cifar10 --search_space tss | ||||
| # python ./exps/algos-v2/random_wo_share.py --dataset cifar100 --search_space tss | ||||
| # python ./exps/algos-v2/random_wo_share.py --dataset ImageNet16-120 --search_space tss | ||||
| ############################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| @@ -20,7 +22,7 @@ from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_search_spaces | ||||
| from nas_201_api  import NASBench201API, NASBench301API | ||||
| from .regularized_ea import random_topology_func, random_size_func | ||||
| from regularized_ea import random_topology_func, random_size_func | ||||
|  | ||||
|  | ||||
| def main(xargs, api): | ||||
| @@ -28,16 +30,18 @@ def main(xargs, api): | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|   api.reset_time() | ||||
|  | ||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||
|   if xargs.search_space == 'tss': | ||||
|     random_arch = random_topology_func(search_space) | ||||
|   else: | ||||
|     random_arch = random_size_func(search_space) | ||||
|  | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|   best_arch, best_acc, total_time_cost, history = None, -1, [], [] | ||||
|   while total_time_cost[-1] < xargs.time_budget: | ||||
|   current_best_index = [] | ||||
|   while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget: | ||||
|     arch = random_arch() | ||||
|     accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') | ||||
|     total_time_cost.append(total_cost) | ||||
| @@ -45,13 +49,14 @@ def main(xargs, api): | ||||
|     if best_arch is None or best_acc < accuracy: | ||||
|       best_acc, best_arch = accuracy, arch | ||||
|     logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) | ||||
|   logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).'.format(time_string(), best_arch, best_acc, len(history), total_time_cost, time.time()-x_start_time)) | ||||
|     current_best_index.append(api.query_index_by_arch(best_arch)) | ||||
|   logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost[-1])) | ||||
|    | ||||
|   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||
|   logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|   logger.close() | ||||
|   return logger.log_dir, total_time_cost, history | ||||
|   return logger.log_dir, current_best_index, total_time_cost | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
| @@ -62,7 +67,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--time_budget',        type=int,   default=20000, help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500,   help='The total runs for evaluation.') | ||||
|   # log | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,    help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
| @@ -77,7 +82,7 @@ if __name__ == '__main__': | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, {} | ||||
|     save_dir, all_info = None, collections.OrderedDict() | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|   | ||||
| @@ -155,7 +155,7 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|   population = collections.deque() | ||||
|   api.reset_time() | ||||
|   history, total_time_cost = [], []  # Not used by the algorithm, only used to report results. | ||||
|  | ||||
|   current_best_index = [] | ||||
|   # Initialize the population with random models. | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
| @@ -163,8 +163,9 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|     model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||
|     # Append the info | ||||
|     population.append(model) | ||||
|     history.append(model) | ||||
|     history.append((model.accuracy, model.arch)) | ||||
|     total_time_cost.append(total_cost) | ||||
|     current_best_index.append(api.query_index_by_arch(max(history, key=lambda x: x[0])[1])) | ||||
|  | ||||
|   # Carry out evolution in cycles. Each cycle produces a model and removes another. | ||||
|   while total_time_cost[-1] < time_budget: | ||||
| @@ -183,15 +184,16 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|     # Create the child model and store it. | ||||
|     child = Model() | ||||
|     child.arch = mutate_arch(parent.arch) | ||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, '12') | ||||
|     # Append the info | ||||
|     population.append(child) | ||||
|     history.append(child) | ||||
|     history.append((child.accuracy, child.arch)) | ||||
|     current_best_index.append(api.query_index_by_arch(max(history, key=lambda x: x[0])[1])) | ||||
|     total_time_cost.append(total_cost) | ||||
|  | ||||
|     # Remove the oldest model. | ||||
|     population.popleft() | ||||
|   return history, total_time_cost | ||||
|   return history, current_best_index, total_time_cost | ||||
|  | ||||
|  | ||||
| def main(xargs, api): | ||||
| @@ -210,7 +212,7 @@ def main(xargs, api): | ||||
|   x_start_time = time.time() | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||
|   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
| @@ -220,7 +222,7 @@ def main(xargs, api): | ||||
|   logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|   logger.close() | ||||
|   return logger.log_dir, [api.query_index_by_arch(x.arch) for x in history], total_times | ||||
|   return logger.log_dir, current_best_index, total_times | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
| @@ -249,7 +251,7 @@ if __name__ == '__main__': | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, {} | ||||
|     save_dir, all_info = None, collections.OrderedDict() | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|   | ||||
| @@ -145,6 +145,7 @@ def main(xargs, api): | ||||
|   x_start_time = time.time() | ||||
|   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) | ||||
|   total_steps, total_costs, trace = 0, [], [] | ||||
|   current_best_index = [] | ||||
|   while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget: | ||||
|     start_time = time.time() | ||||
|     log_prob, action = select_action( policy ) | ||||
| @@ -162,9 +163,8 @@ def main(xargs, api): | ||||
|     # accumulate time | ||||
|     total_steps += 1 | ||||
|     logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) | ||||
|     #logger.log('----> {:}'.format(policy.arch_parameters)) | ||||
|     #logger.log('') | ||||
|  | ||||
|     # to analyze | ||||
|     current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1])) | ||||
|   # best_arch = policy.genotype() # first version | ||||
|   best_arch = max(trace, key=lambda x: x[0])[1] | ||||
|   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time)) | ||||
| @@ -173,7 +173,7 @@ def main(xargs, api): | ||||
|   logger.log('-'*100) | ||||
|   logger.close() | ||||
|  | ||||
|   return logger.log_dir, [api.query_index_by_arch(x[1]) for x in trace], total_costs | ||||
|   return logger.log_dir, current_best_index, total_costs | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
| @@ -203,7 +203,7 @@ if __name__ == '__main__': | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, {} | ||||
|     save_dir, all_info = None, collections.OrderedDict() | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|   | ||||
| @@ -13,5 +13,6 @@ do | ||||
|   do | ||||
|     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 | ||||
|     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||
|     python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} | ||||
|   done | ||||
| done | ||||
|   | ||||
		Reference in New Issue
	
	Block a user